Slavov Chavdar, Yang Chong, Schweighauser Luca, Wegner Hermann A, Dreuw Andreas, Wachtveitl Josef
Institute of Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, Germany.
Interdisciplinary Center for Scientific Computing, IWR, University of Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany.
Chemphyschem. 2017 Aug 18;18(16):2137-2141. doi: 10.1002/cphc.201700384. Epub 2017 Jun 29.
Azobenzenes are widely utilized as molecular photoswitches for control of nanoscale processes. Their photoisomerization reaction is highly robust and is retained even in extremely rigid systems. Currently, it is not clear what geometric restrictions are required to block this isomerization successfully. We present here a combined experimental and theoretical study on the ultrafast dynamics of cyclotrisazobenzene (CTA) and demonstrate that the structural constraints in CTA prevent isomerization of the photoswitch units. In the developed molecular picture, the N=N bonds respond elastically to the motion along the isomerization coordinates, which leads to ultrafast and complete dissipation of the UV excitation as heat. Based on this property, CTA and possibly other similarly designed molecules can be utilized as UV absorbers, for example in sunscreens; other potential applications are also envisioned.
偶氮苯被广泛用作控制纳米级过程的分子光开关。它们的光异构化反应非常稳定,即使在极其刚性的体系中也能保持。目前,尚不清楚成功阻断这种异构化需要何种几何限制。我们在此展示了一项关于环三聚偶氮苯(CTA)超快动力学的实验与理论相结合的研究,并证明CTA中的结构限制可防止光开关单元的异构化。在构建的分子模型中,N=N键对沿异构化坐标的运动产生弹性响应,这导致紫外激发以热的形式超快且完全耗散。基于这一特性,CTA以及可能其他类似设计的分子可被用作紫外线吸收剂,例如用于防晒霜中;还设想了其他潜在应用。