Skogh Anna, Lesniak Anna, Gaugaz Fabienne Z, Svensson Richard, Lindeberg Gunnar, Fransson Rebecca, Nyberg Fred, Hallberg Mathias, Sandström Anja
Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden.
The Beijer Laboratory, Department of Pharmaceutical Bioscience, Uppsala University, BMC, Box 591, SE-751 24 Uppsala, Sweden.
Eur J Pharm Sci. 2017 Aug 30;106:345-351. doi: 10.1016/j.ejps.2017.06.004. Epub 2017 Jun 3.
The heptapeptide SP (1, Arg-Pro-Lys-Pro-Gln-Gln-Phe) is the major bioactive metabolite formed after proteolytic processing of the neuropeptide substance P (SP, Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH). The heptapeptide 1 frequently exhibits opposite effects to those induced by SP, such as exerting antinociception, or attenuating thermal hyperalgesia and mechanical allodynia. The heptapeptide SP amide (2, Arg-Pro-Lys-Pro-Gln-Gln-Phe-NH) is often more efficacious than 1 in experimental pain models. We have now assessed the anti-allodynic outcome after systemic administration of 2 and a series of Ala-substituted and truncated analogues of 2, in the spared nerve injury (SNI) mice model and the results obtained were correlated with in vitro plasma stability and permeability measurements. It is herein demonstrated that an intact Arg in SP amide analogues is fundamental for retaining a potent in vivo effect, while Lys of 2 is less important. A displacement with Ala or truncation rendered the peptide analogues either inactive or with a significantly attenuated in vivo activity. Thus, the pentapeptide SP amide (7, t=11.1 min) proven to be the major metabolite of 2, demonstrated an in vivo effect itself although considerably less significant than 2 in the SNI model. Intraperitoneal administration of 2 in a low dose furnished the most powerful anti-allodynic effect in the SNI model of all the analogous evaluated, despite a fast proteolysis of 2 in plasma (t=6.4 min). It is concluded that not only the C-terminal residue, that we previously demonstrated, but also the N-terminal with its basic side chain, are important for achieving effective pain relief. This information is of value for the further design process aimed at identifying more drug-like SP amide related peptidomimetics with pronounced anti-allodynic effects.
七肽SP(1,精氨酸-脯氨酸-赖氨酸-脯氨酸-谷氨酰胺-谷氨酰胺-苯丙氨酸)是神经肽P物质(SP,精氨酸-脯氨酸-赖氨酸-脯氨酸-谷氨酰胺-谷氨酰胺-苯丙氨酸-苯丙氨酸-甘氨酸-亮氨酸-蛋氨酸-酰胺)经蛋白水解加工后形成的主要生物活性代谢产物。七肽1常常表现出与SP诱导的效应相反的作用,比如发挥抗伤害感受作用,或减轻热痛觉过敏和机械性异常性疼痛。在实验性疼痛模型中,七肽SP酰胺(2,精氨酸-脯氨酸-赖氨酸-脯氨酸-谷氨酰胺-谷氨酰胺-苯丙氨酸-酰胺)通常比1更有效。我们现在已经在 spared nerve injury(SNI)小鼠模型中评估了2以及一系列2的丙氨酸取代和截短类似物全身给药后的抗异常性疼痛效果,并且将获得的结果与体外血浆稳定性和通透性测量结果相关联。本文证明,SP酰胺类似物中完整的精氨酸对于保留有效的体内效应至关重要,而2中的赖氨酸则不太重要。用丙氨酸取代或截短会使肽类似物失去活性或体内活性显著减弱。因此,五肽SP酰胺(7,t = 11.1分钟)被证明是2的主要代谢产物,其自身在体内具有效应,尽管在SNI模型中比2的效应要小得多。在所有评估的类似物中,低剂量腹腔注射2在SNI模型中产生了最强大的抗异常性疼痛作用,尽管2在血浆中的蛋白水解速度很快(t = 6.4分钟)。得出的结论是,不仅我们之前证明的C末端残基,而且带有碱性侧链的N末端对于实现有效的疼痛缓解也很重要。这些信息对于进一步的设计过程具有价值,该过程旨在鉴定出更多具有明显抗异常性疼痛作用的类药物SP酰胺相关拟肽。