Suppr超能文献

功能网络完整性预示着临床前阿尔茨海默病的认知衰退。

Functional network integrity presages cognitive decline in preclinical Alzheimer disease.

作者信息

Buckley Rachel F, Schultz Aaron P, Hedden Trey, Papp Kathryn V, Hanseeuw Bernard J, Marshall Gad, Sepulcre Jorge, Smith Emily E, Rentz Dorene M, Johnson Keith A, Sperling Reisa A, Chhatwal Jasmeer P

机构信息

From the Florey Institutes of Neuroscience and Mental Health (R.F.B.), Melbourne; Melbourne School of Psychological Science (R.F.B.), University of Melbourne, Australia; Department of Neurology (R.F.B., A.P.S., K.V.P., B.J.H., G.M., D.M.R., K.A.J., R.A.S., J.P.C.), Athinoula A. Martinos Center for Biomedical Imaging (A.P.S., T.H., B.J.H., J.S., K.A.J.) and Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging (J.S., K.A.J.), Department of Radiology, Massachusetts General Hospital; Harvard Medical School (R.F.B., A.P.S., T.H., K.V.P., B.J.H., G.M., D.M.R., K.A.J., R.A.S., J.P.C.); Center for Alzheimer Research and Treatment, Department of Neurology (K.V.P., G.M., D.M.R., K.A.J., R.A.S., J.P.C.), Brigham and Women's Hospital, Boston, MA: and Department of Psychiatry (E.E.S.), University of Texas Southwestern Medical Center, Dallas.

出版信息

Neurology. 2017 Jul 4;89(1):29-37. doi: 10.1212/WNL.0000000000004059. Epub 2017 Jun 7.

Abstract

OBJECTIVE

To examine the utility of resting-state functional connectivity MRI (rs-fcMRI) measurements of network integrity as a predictor of future cognitive decline in preclinical Alzheimer disease (AD).

METHODS

A total of 237 clinically normal older adults (aged 63-90 years, Clinical Dementia Rating 0) underwent baseline β-amyloid (Aβ) imaging with Pittsburgh compound B PET and structural and rs-fcMRI. We identified 7 networks for analysis, including 4 cognitive networks (default, salience, dorsal attention, and frontoparietal control) and 3 noncognitive networks (primary visual, extrastriate visual, motor). Using linear and curvilinear mixed models, we used baseline connectivity in these networks to predict longitudinal changes in preclinical Alzheimer cognitive composite (PACC) performance, both alone and interacting with Aβ burden. Median neuropsychological follow-up was 3 years.

RESULTS

Baseline connectivity in the default, salience, and control networks predicted longitudinal PACC decline, unlike connectivity in the dorsal attention and all noncognitive networks. Default, salience, and control network connectivity was also synergistic with Aβ burden in predicting decline, with combined higher Aβ and lower connectivity predicting the steepest curvilinear decline in PACC performance.

CONCLUSIONS

In clinically normal older adults, lower functional connectivity predicted more rapid decline in PACC scores over time, particularly when coupled with increased Aβ burden. Among examined networks, default, salience, and control networks were the strongest predictors of rate of change in PACC scores, with the inflection point of greatest decline beyond the fourth year of follow-up. These results suggest that rs-fcMRI may be a useful predictor of early, AD-related cognitive decline in clinical research settings.

摘要

目的

研究静息态功能连接磁共振成像(rs-fcMRI)测量网络完整性作为临床前阿尔茨海默病(AD)未来认知衰退预测指标的效用。

方法

共有237名临床正常的老年人(年龄63 - 90岁,临床痴呆评定量表为0)接受了匹兹堡化合物B正电子发射断层扫描(PET)的基线β淀粉样蛋白(Aβ)成像以及结构和rs-fcMRI检查。我们确定了7个网络进行分析,包括4个认知网络(默认网络、突显网络、背侧注意网络和额顶叶控制网络)和3个非认知网络(初级视觉网络、纹外视觉网络、运动网络)。使用线性和曲线混合模型,我们利用这些网络中的基线连接性来预测临床前阿尔茨海默病认知综合指标(PACC)表现的纵向变化,包括单独预测以及与Aβ负担相互作用时的预测。神经心理学随访的中位时间为3年。

结果

默认网络、突显网络和控制网络的基线连接性可预测PACC的纵向衰退,与背侧注意网络和所有非认知网络的连接性不同。默认网络、突显网络和控制网络的连接性在预测衰退方面也与Aβ负担具有协同作用,Aβ水平较高且连接性较低共同预测了PACC表现最陡峭的曲线衰退。

结论

在临床正常的老年人中,较低的功能连接性预测了PACC分数随时间的更快衰退,尤其是在伴有Aβ负担增加时。在所检查的网络中,默认网络、突显网络和控制网络是PACC分数变化率的最强预测指标,最大衰退的拐点出现在随访第四年之后。这些结果表明,rs-fcMRI可能是临床研究环境中AD相关早期认知衰退的有用预测指标。

相似文献

1
Functional network integrity presages cognitive decline in preclinical Alzheimer disease.
Neurology. 2017 Jul 4;89(1):29-37. doi: 10.1212/WNL.0000000000004059. Epub 2017 Jun 7.
3
Longitudinal degradation of the default/salience network axis in symptomatic individuals with elevated amyloid burden.
Neuroimage Clin. 2020;26:102052. doi: 10.1016/j.nicl.2019.102052. Epub 2019 Oct 22.
5
Early and late change on the preclinical Alzheimer's cognitive composite in clinically normal older individuals with elevated amyloid β.
Alzheimers Dement. 2017 Sep;13(9):1004-1012. doi: 10.1016/j.jalz.2017.01.018. Epub 2017 Feb 28.
8
Sensitivity of a Preclinical Alzheimer's Cognitive Composite (PACC) to amyloid β load in preclinical Alzheimer's disease.
J Clin Exp Neuropsychol. 2019 Aug;41(6):591-600. doi: 10.1080/13803395.2019.1593949. Epub 2019 Mar 29.
10
The preclinical Alzheimer cognitive composite: measuring amyloid-related decline.
JAMA Neurol. 2014 Aug;71(8):961-70. doi: 10.1001/jamaneurol.2014.803.

引用本文的文献

3
Resistance and resilience to Alzheimer's disease in Down syndrome.
Alzheimers Dement. 2025 Apr;21(4):e70151. doi: 10.1002/alz.70151.
5
Increasing hub disruption parallels dementia severity in autosomal dominant Alzheimer's disease.
Netw Neurosci. 2024 Dec 10;8(4):1265-1290. doi: 10.1162/netn_a_00395. eCollection 2024.
7
Linking the neural signature of response time variability to Alzheimer's disease pathology and cognitive functioning.
Netw Neurosci. 2024 Oct 1;8(3):697-713. doi: 10.1162/netn_a_00373. eCollection 2024.
10
Sex and gender differences in cognitive resilience to aging and Alzheimer's disease.
Alzheimers Dement. 2024 Aug;20(8):5695-5719. doi: 10.1002/alz.13844. Epub 2024 Jul 5.

本文引用的文献

1
An approach to studying the neural correlates of reserve.
Brain Imaging Behav. 2017 Apr;11(2):410-416. doi: 10.1007/s11682-016-9566-x.
2
A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers.
Neurology. 2016 Aug 2;87(5):539-47. doi: 10.1212/WNL.0000000000002923. Epub 2016 Jul 1.
3
Cascading network failure across the Alzheimer's disease spectrum.
Brain. 2016 Feb;139(Pt 2):547-62. doi: 10.1093/brain/awv338. Epub 2015 Nov 19.
4
Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.
Sci Data. 2015 Jul 7;2:150031. doi: 10.1038/sdata.2015.31. eCollection 2015.
5
Functional Connectivity in Multiple Cortical Networks Is Associated with Performance Across Cognitive Domains in Older Adults.
Brain Connect. 2015 Oct;5(8):505-16. doi: 10.1089/brain.2014.0327. Epub 2015 Jun 23.
7
Multiple Brain Markers are Linked to Age-Related Variation in Cognition.
Cereb Cortex. 2016 Apr;26(4):1388-400. doi: 10.1093/cercor/bhu238. Epub 2014 Oct 14.
8
9
Template based rotation: a method for functional connectivity analysis with a priori templates.
Neuroimage. 2014 Nov 15;102 Pt 2(0 2):620-36. doi: 10.1016/j.neuroimage.2014.08.022. Epub 2014 Aug 21.
10
The preclinical Alzheimer cognitive composite: measuring amyloid-related decline.
JAMA Neurol. 2014 Aug;71(8):961-70. doi: 10.1001/jamaneurol.2014.803.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验