Graduate Institute of Applied Physics, National Chengchi University, Taipei, 11605, Taiwan.
Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
Sci Rep. 2017 Jun 8;7(1):3105. doi: 10.1038/s41598-017-03136-7.
Many human or animal diseases are related to aggregation of proteins. A viable biological organism should maintain in non-equilibrium states. How protein aggregate and why biological organisms can maintain in non-equilibrium states are not well understood. As a first step to understand such complex systems problems, we consider simple model systems containing polymer chains and solvent particles. The strength of the spring to connect two neighboring monomers in a polymer chain is controlled by a parameter s with s → ∞ for rigid-bond. The strengths of bending and torsion angle dependent interactions are controlled by a parameter s with s → -∞ corresponding to no bending and torsion angle dependent interactions. We find that for very small s , polymer chains tend to aggregate spontaneously and the trend is independent of the strength of spring. For strong springs, the speed distribution of monomers in the parallel (along the direction of the spring to connect two neighboring monomers) and perpendicular directions have different effective temperatures and such systems are in non-equilibrium states.
许多人类或动物疾病都与蛋白质的聚集有关。一个可行的生物有机体应该保持在非平衡状态。蛋白质是如何聚集的,以及为什么生物有机体可以保持在非平衡状态,这些都还没有被很好地理解。作为理解此类复杂系统问题的第一步,我们考虑了包含聚合物链和溶剂粒子的简单模型系统。连接聚合物链中两个相邻单体的弹簧的强度由一个参数 s 控制,当 s → ∞时,聚合物链为刚性键。弯曲和扭转角相关相互作用的强度由一个参数 s 控制,当 s → -∞时,聚合物链没有弯曲和扭转角相关相互作用。我们发现,对于非常小的 s ,聚合物链会自发地聚集,而且这种趋势与弹簧的强度无关。对于强弹簧,沿连接两个相邻单体的弹簧方向(平行方向)和垂直方向上的单体的速度分布具有不同的有效温度,因此这些系统处于非平衡状态。