Suppr超能文献

鉴定 SHELL 基因的杂合不足对提高油棕渐渗杂种果实形态预测的作用。

Characterizing haploinsufficiency of SHELL gene to improve fruit form prediction in introgressive hybrids of oil palm.

机构信息

Biotechnology & Breeding Department, Sime Darby Plantation R&D Centre, Selangor, Malaysia.

School of Biosciences, University of Nottingham, Nottingham, UK.

出版信息

Sci Rep. 2017 Jun 8;7(1):3118. doi: 10.1038/s41598-017-03225-7.

Abstract

The fundamental trait in selective breeding of oil palm (Eleais guineensis Jacq.) is the shell thickness surrounding the kernel. The monogenic shell thickness is inversely correlated to mesocarp thickness, where the crude palm oil accumulates. Commercial thin-shelled tenera derived from thick-shelled dura × shell-less pisifera generally contain 30% higher oil per bunch. Two mutations, sh (M1) and sh (M2) in the SHELL gene - a type II MADS-box transcription factor mainly present in AVROS and Nigerian origins, were reported to be responsible for different fruit forms. In this study, we have tested 1,339 samples maintained in Sime Darby Plantation using both mutations. Five genotype-phenotype discrepancies and eight controls were then re-tested with all five reported mutations (sh , sh , sh , sh and sh ) within the same gene. The integration of genotypic data, pedigree records and shell formation model further explained the haploinsufficiency effect on the SHELL gene with different number of functional copies. Some rare mutations were also identified, suggesting a need to further confirm the existence of cis-compound mutations in the gene. With this, the prediction accuracy of fruit forms can be further improved, especially in introgressive hybrids of oil palm. Understanding causative variant segregation is extremely important, even for monogenic traits such as shell thickness in oil palm.

摘要

油棕( Elaeis guineensis Jacq. )选择性繁殖的基本特征是围绕种仁的壳厚度。单基因壳厚度与中果皮厚度呈负相关,而粗棕榈油就在中果皮中积累。商业上的薄壳 tenera 品种是由厚壳 dura × 无壳 pisifera 衍生而来,通常每束的含油量要高 30%。有报道称, SHELL 基因中的两个突变 sh (M1)和 sh (M2)——一种主要存在于 AVROS 和尼日利亚起源的 II 型 MADS-box 转录因子,负责不同的果实形态。在这项研究中,我们使用这两个突变对在 Sime Darby 种植园保存的 1339 个样本进行了测试。然后,对五个基因型-表型不一致的样本和八个对照样本,重新用同一个基因中的所有五个报告的突变( sh 、 sh 、 sh 、 sh 和 sh )进行了测试。基因型数据、系谱记录和壳形成模型的整合,进一步解释了 SHELL 基因中不同功能拷贝数的单倍体不足效应对其的影响。还发现了一些罕见的突变,这表明需要进一步确认基因中顺式复合突变的存在。通过这种方式,可以进一步提高对果实形态的预测准确性,尤其是在油棕的渐渗杂种中。即使是壳厚度这样的单基因性状,了解候选变异的分离也非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5ef/5465187/c560e636bf28/41598_2017_3225_Fig1_HTML.jpg

相似文献

3
Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry.
Front Plant Sci. 2016 Jun 21;7:771. doi: 10.3389/fpls.2016.00771. eCollection 2016.
4
The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK.
Nature. 2013 Aug 15;500(7462):340-4. doi: 10.1038/nature12356. Epub 2013 Jul 24.
5
Variation for heterodimerization and nuclear localization among known and novel oil palm SHELL alleles.
New Phytol. 2020 Apr;226(2):426-440. doi: 10.1111/nph.16387. Epub 2020 Jan 28.
6
Variability and performance evaluation of introgressed Nigerian dura x Deli dura oil palm progenies.
Genet Mol Res. 2014 Apr 3;13(2):2426-37. doi: 10.4238/2014.April.3.15.
8
ACC oxidase and miRNA 159a, and their involvement in fresh fruit bunch yield (FFB) via sex ratio determination in oil palm.
Mol Genet Genomics. 2016 Jun;291(3):1243-57. doi: 10.1007/s00438-016-1181-4. Epub 2016 Feb 20.
9
Identification and Analysis of MADS-Box Genes Expressed in the Mesocarp of Oil Palm Fruit (Elaeis guineensis Jacq.).
Biochem Genet. 2023 Dec;61(6):2382-2400. doi: 10.1007/s10528-023-10376-y. Epub 2023 Apr 15.
10
Genetic performance and general combining ability of oil palm Deli dura x AVROS pisifera tested on inland soils.
ScientificWorldJournal. 2012;2012:792601. doi: 10.1100/2012/792601. Epub 2012 May 22.

引用本文的文献

1
Unveiling the Secrets of Oil Palm Genetics: A Look into Omics Research.
Int J Mol Sci. 2024 Aug 7;25(16):8625. doi: 10.3390/ijms25168625.
3
A practical genome-enabled legitimacy assay for oil palm breeding and seed production.
BMC Plant Biol. 2019 Nov 5;19(1):470. doi: 10.1186/s12870-019-2062-x.

本文引用的文献

1
Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry.
Front Plant Sci. 2016 Jun 21;7:771. doi: 10.3389/fpls.2016.00771. eCollection 2016.
2
Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm.
Mol Plant. 2016 Aug 1;9(8):1132-1141. doi: 10.1016/j.molp.2016.04.010. Epub 2016 Apr 22.
3
The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK.
Nature. 2013 Aug 15;500(7462):340-4. doi: 10.1038/nature12356. Epub 2013 Jul 24.
4
A high-performance computing toolset for relatedness and principal component analysis of SNP data.
Bioinformatics. 2012 Dec 15;28(24):3326-8. doi: 10.1093/bioinformatics/bts606. Epub 2012 Oct 11.
5
Multiple mutations in genetic cardiovascular disease: a marker of disease severity?
Circ Cardiovasc Genet. 2009 Apr;2(2):182-90. doi: 10.1161/CIRCGENETICS.108.836478.
6
Spread of an inactive form of caspase-12 in humans is due to recent positive selection.
Am J Hum Genet. 2006 Apr;78(4):659-70. doi: 10.1086/503116. Epub 2006 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验