Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
Nanoscience Center, iNANO, University of Aarhus, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
Angew Chem Int Ed Engl. 2017 Oct 16;56(43):13228-13231. doi: 10.1002/anie.201703243. Epub 2017 Aug 23.
Chemically engineered and functionalized nanoscale compartments are used in bottom-up synthetic biology to construct compartmentalized chemical processes. Progressively more complex designs demand spatial and temporal control over entrapped species. Here, we address this demand with a DNA-encoded design for the successive fusion of multiple liposome populations. Three individual stages of fusion are induced by orthogonally hybridizing sets of membrane-anchored oligonucleotides. Each fusion event leads to efficient content mixing and transfer of the recognition unit for the subsequent stage. In contrast to fusion-protein-dependent eukaryotic vesicle processing, this artificial fusion cascade exploits the versatile encoding potential of DNA hybridization and is generally applicable to small and giant unilamellar vesicles. This platform could thus enable numerous applications in artificial cellular systems and liposome-based synthetic pathways.
化学工程和功能化的纳米级隔室被用于从下到上的合成生物学,以构建分隔的化学过程。越来越复杂的设计需要对包封物种进行时空控制。在这里,我们通过 DNA 编码设计来满足这一需求,设计用于连续融合多个脂质体群体。通过正交杂交的一组膜锚定寡核苷酸来诱导三个独立的融合阶段。每个融合事件都会导致有效内容混合和识别单元转移到下一个阶段。与依赖融合蛋白的真核囊泡处理不同,这种人工融合级联利用了 DNA 杂交的多功能编码潜力,并且通常适用于小的和大的单层囊泡。因此,该平台可以在人工细胞系统和基于脂质体的合成途径中实现许多应用。