Suppr超能文献

自养型硫酸盐同化途径的失活显著降低了产黄青霉生产菌株中高水平β-内酰胺抗生素的生物合成及节孢子形成。

Deactivation of the autotrophic sulfate assimilation pathway substantially reduces high-level β-lactam antibiotic biosynthesis and arthrospore formation in a production strain from Acremonium chrysogenum.

作者信息

Terfehr Dominik, Kück Ulrich

机构信息

Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr 150, 44780 Bochum, Germany.

出版信息

Microbiology (Reading). 2017 Jun;163(6):817-828. doi: 10.1099/mic.0.000474. Epub 2017 Jun 9.

Abstract

The filamentous ascomycete Acremonium chrysogenum is the only industrial producer of the β-lactam antibiotic cephalosporin C. Synthesis of all β-lactam antibiotics starts with the three amino acids l-α-aminoadipic acid, l-cysteine and l-valine condensing to form the δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine tripeptide. The availability of building blocks is essential in every biosynthetic process and is therefore one of the most important parameters required for optimal biosynthetic production. Synthesis of l-cysteine is feasible by various biosynthetic pathways in all euascomycetes, and sequencing of the Acr. chrysogenum genome has shown that a full set of sulfur-metabolizing genes is present. In principle, two pathways are effective: an autotrophic one, where the sulfur atom is taken from assimilated sulfide to synthesize either l-cysteine or l-homocysteine, and a reverse transsulfuration pathway, where l-methionine is the sulfur donor. Previous research with production strains has focused on reverse transsulfuration, and concluded that both l-methionine and reverse transsulfuration are essential for high-level cephalosporin C synthesis. Here, we conducted molecular genetic analysis with A3/2, another production strain, to investigate the autotrophic pathway. Strains lacking either cysteine synthase or homocysteine synthase, enzymes of the autotrophic pathway, are still autotrophic for sulfur. However, deletion of both genes results in sulfur amino acid auxotrophic mutants exhibiting delayed biomass production and drastically reduced cephalosporin C synthesis. Furthermore, both single- and double-deletion strains are more sensitive to oxidative stress and form fewer arthrospores. Our findings provide evidence that autotrophic sulfur assimilation is essential for growth and cephalosporin C biosynthesis in production strain A3/2 from Acr. chrysogenum.

摘要

丝状子囊菌产黄青霉是β-内酰胺抗生素头孢菌素C的唯一工业生产菌。所有β-内酰胺抗生素的合成均起始于l-α-氨基己二酸、l-半胱氨酸和l-缬氨酸这三种氨基酸缩合形成δ-(l-α-氨基己二酰)-l-半胱氨酰-d-缬氨酸三肽。在每个生物合成过程中,构建模块的可用性至关重要,因此是最佳生物合成生产所需的最重要参数之一。在所有真子囊菌中,通过各种生物合成途径都可以合成l-半胱氨酸,产黄青霉基因组测序表明存在一整套硫代谢基因。原则上,有两条途径是有效的:一条自养途径,其中硫原子取自同化的硫化物以合成l-半胱氨酸或l-高半胱氨酸;另一条是反向转硫途径,其中l-甲硫氨酸是硫供体。以往对生产菌株的研究集中在反向转硫途径,并得出结论,l-甲硫氨酸和反向转硫途径对于高水平头孢菌素C的合成都是必不可少的。在此,我们用另一种生产菌株A3/2进行了分子遗传学分析,以研究自养途径。缺乏自养途径的酶即半胱氨酸合酶或高半胱氨酸合酶的菌株,在硫方面仍然是自养的。然而,这两个基因的缺失会导致硫氨基酸营养缺陷型突变体,其生物量产生延迟,头孢菌素C的合成大幅减少。此外,单缺失和双缺失菌株对氧化应激更敏感,形成的节孢子也更少。我们的研究结果证明,自养硫同化对于产黄青霉生产菌株A3/2的生长和头孢菌素C生物合成至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验