Suppr超能文献

通过 RNA 测序进行孟德尔疾病的遗传诊断。

Genetic diagnosis of Mendelian disorders via RNA sequencing.

机构信息

Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.

Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany.

出版信息

Nat Commun. 2017 Jun 12;8:15824. doi: 10.1038/ncomms15824.

Abstract

Across a variety of Mendelian disorders, ∼50-75% of patients do not receive a genetic diagnosis by exome sequencing indicating disease-causing variants in non-coding regions. Although genome sequencing in principle reveals all genetic variants, their sizeable number and poorer annotation make prioritization challenging. Here, we demonstrate the power of transcriptome sequencing to molecularly diagnose 10% (5 of 48) of mitochondriopathy patients and identify candidate genes for the remainder. We find a median of one aberrantly expressed gene, five aberrant splicing events and six mono-allelically expressed rare variants in patient-derived fibroblasts and establish disease-causing roles for each kind. Private exons often arise from cryptic splice sites providing an important clue for variant prioritization. One such event is found in the complex I assembly factor TIMMDC1 establishing a novel disease-associated gene. In conclusion, our study expands the diagnostic tools for detecting non-exonic variants and provides examples of intronic loss-of-function variants with pathological relevance.

摘要

在各种孟德尔疾病中,约有 50-75%的患者通过外显子组测序无法获得遗传诊断,表明非编码区域存在致病变异。尽管基因组测序原则上可以揭示所有遗传变异,但它们数量众多且注释较差,使得优先级排序具有挑战性。在这里,我们展示了转录组测序在分子诊断 10%(48 例中的 5 例)线粒体病患者中的强大功能,并确定了其余患者的候选基因。我们在患者来源的成纤维细胞中发现了中位数为一个异常表达的基因、五个异常剪接事件和六个单等位基因表达的罕见变异,并确定了每种变异的致病作用。隐蔽剪接位点经常产生私有外显子,这为变异优先级排序提供了重要线索。这种情况发生在复合体 I 组装因子 TIMMDC1 中,建立了一个新的与疾病相关的基因。总之,我们的研究扩展了检测非外显子变异的诊断工具,并提供了具有病理相关性的内含子失活变异的实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22d3/5499207/c7f23678d1f9/ncomms15824-f1.jpg

相似文献

1
Genetic diagnosis of Mendelian disorders via RNA sequencing.
Nat Commun. 2017 Jun 12;8:15824. doi: 10.1038/ncomms15824.
3
Genome and RNA sequencing were essential to reveal cryptic intronic variants associated to defective ATP6AP1 mRNA processing.
Mol Genet Metab. 2024 Jul;142(3):108511. doi: 10.1016/j.ymgme.2024.108511. Epub 2024 Jun 6.
4
Systematic Computational Identification of Variants That Activate Exonic and Intronic Cryptic Splice Sites.
Am J Hum Genet. 2017 May 4;100(5):751-765. doi: 10.1016/j.ajhg.2017.04.001.
5
Genome sequencing and RNA sequencing of urinary cells reveal an intronic FBN1 variant causing aberrant splicing.
J Hum Genet. 2022 Jul;67(7):387-392. doi: 10.1038/s10038-022-01016-1. Epub 2022 Jan 24.
6
Interpretable prioritization of splice variants in diagnostic next-generation sequencing.
Am J Hum Genet. 2021 Sep 2;108(9):1564-1577. doi: 10.1016/j.ajhg.2021.06.014. Epub 2021 Jul 21.
7
Identification of Synonymous Pathogenic Variants in Monogenic Disorders by Integrating Exome with Transcriptome Sequencing.
J Mol Diagn. 2024 Apr;26(4):267-277. doi: 10.1016/j.jmoldx.2023.12.005. Epub 2024 Jan 26.
8
10
Clinical implementation of RNA sequencing for Mendelian disease diagnostics.
Genome Med. 2022 Apr 5;14(1):38. doi: 10.1186/s13073-022-01019-9.

引用本文的文献

1
Combined genome and transcriptome analysis identifies molecular signatures of aortic disease in patients with Marfan syndrome.
J Mol Cell Cardiol Plus. 2025 Jun 19;13:100467. doi: 10.1016/j.jmccpl.2025.100467. eCollection 2025 Sep.
2
Tandem splice acceptor sites: Profiling their relevance to human disease.
Genet Med. 2025 Jul 2;27(9):101520. doi: 10.1016/j.gim.2025.101520.
3
Clinical applications of and molecular insights from RNA sequencing in a rare disease cohort.
Genome Med. 2025 Jul 1;17(1):72. doi: 10.1186/s13073-025-01494-w.
5
Bi-allelic mutations in FASTKD5 are associated with cytochrome c oxidase deficiency and early- to late-onset Leigh syndrome.
Am J Hum Genet. 2025 Jul 3;112(7):1699-1710. doi: 10.1016/j.ajhg.2025.05.007. Epub 2025 Jun 10.
8
Translating Muscle RNAseq Into the Clinic for the Diagnosis of Muscle Diseases.
Ann Clin Transl Neurol. 2025 Jul;12(7):1465-1479. doi: 10.1002/acn3.70078. Epub 2025 May 25.
10
Bayesian estimation of allele-specific expression in the presence of phasing uncertainty.
Bioinformatics. 2025 Jun 2;41(6). doi: 10.1093/bioinformatics/btaf283.

本文引用的文献

1
Annotation-free quantification of RNA splicing using LeafCutter.
Nat Genet. 2018 Jan;50(1):151-158. doi: 10.1038/s41588-017-0004-9. Epub 2017 Dec 11.
2
The impact of rare variation on gene expression across tissues.
Nature. 2017 Oct 11;550(7675):239-243. doi: 10.1038/nature24267.
3
Improving genetic diagnosis in Mendelian disease with transcriptome sequencing.
Sci Transl Med. 2017 Apr 19;9(386). doi: 10.1126/scitranslmed.aal5209.
4
CLPP coordinates mitoribosomal assembly through the regulation of ERAL1 levels.
EMBO J. 2016 Dec 1;35(23):2566-2583. doi: 10.15252/embj.201694253. Epub 2016 Oct 20.
5
Mitochondrial diseases.
Nat Rev Dis Primers. 2016 Oct 20;2:16080. doi: 10.1038/nrdp.2016.80.
6
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
8
Lessons from non-canonical splicing.
Nat Rev Genet. 2016 Jul;17(7):407-421. doi: 10.1038/nrg.2016.46. Epub 2016 May 31.
9
Exploiting aberrant mRNA expression in autism for gene discovery and diagnosis.
Hum Genet. 2016 Jul;135(7):797-811. doi: 10.1007/s00439-016-1673-7. Epub 2016 Apr 30.
10
RNA splicing is a primary link between genetic variation and disease.
Science. 2016 Apr 29;352(6285):600-4. doi: 10.1126/science.aad9417. Epub 2016 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验