Chiba Yasutaka
Clinical Research Center, Kinki University Hospital, 377-2 Ohno-higashi, Osakasayama, Osaka, Japan.
Biom J. 2017 Sep;59(5):986-997. doi: 10.1002/bimj.201600085. Epub 2017 Jun 12.
Fisher's exact test is commonly used to compare two groups when the outcome is binary in randomized trials. In the context of causal inference, this test explores the sharp causal null hypothesis (i.e. the causal effect of treatment is the same for all subjects), but not the weak causal null hypothesis (i.e. the causal risks are the same in the two groups). Therefore, in general, rejection of the null hypothesis by Fisher's exact test does not mean that the causal risk difference is not zero. Recently, Chiba (Journal of Biometrics and Biostatistics 2015; 6: 244) developed a new exact test for the weak causal null hypothesis when the outcome is binary in randomized trials; the new test is not based on any large sample theory and does not require any assumption. In this paper, we extend the new test; we create a version of the test applicable to a stratified analysis. The stratified exact test that we propose is general in nature and can be used in several approaches toward the estimation of treatment effects after adjusting for stratification factors. The stratified Fisher's exact test of Jung (Biometrical Journal 2014; 56: 129-140) tests the sharp causal null hypothesis. This test applies a crude estimator of the treatment effect and can be regarded as a special case of our proposed exact test. Our proposed stratified exact test can be straightforwardly extended to analysis of noninferiority trials and to construct the associated confidence interval.
在随机试验中,当结果为二元变量时,费舍尔精确检验通常用于比较两组。在因果推断的背景下,该检验探索的是严格因果零假设(即治疗对所有受试者的因果效应相同),而非弱因果零假设(即两组中的因果风险相同)。因此,一般来说,通过费舍尔精确检验拒绝零假设并不意味着因果风险差异不为零。最近,千叶(《生物统计学与生物统计学期刊》,2015年;6:244)针对随机试验中结果为二元变量时的弱因果零假设开发了一种新的精确检验;该新检验不基于任何大样本理论,也不需要任何假设。在本文中,我们扩展了这种新检验;我们创建了一个适用于分层分析的检验版本。我们提出的分层精确检验本质上具有通用性,可用于在调整分层因素后估计治疗效果的多种方法中。荣格(《生物计量学期刊》,2014年;56:129 - 140)的分层费舍尔精确检验检验的是严格因果零假设。该检验应用了治疗效果的粗略估计量,可被视为我们提出的精确检验的一个特殊情况。我们提出的分层精确检验可以直接扩展到非劣效性试验的分析以及构建相关的置信区间。