Suppr超能文献

一种结合特征选择和词嵌入的两阶段生物医学事件触发检测方法。

A Two-Stage Biomedical Event Trigger Detection Method Integrating Feature Selection and Word Embeddings.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul-Aug;15(4):1325-1332. doi: 10.1109/TCBB.2017.2715016. Epub 2017 Jun 13.

Abstract

Extracting biomedical events from biomedical literature plays an important role in the field of biomedical text mining, and the trigger detection is a key step in biomedical event extraction. We propose a two-stage method for trigger detection, which divides trigger detection into recognition stage and classification stage, and different features are selected in each stage. In the first stage, we select the features which are more suitable for recognition, and in the second stage, the features that are more helpful to classification are adopted. Furthermore, we integrate word embeddings to represent words semantically and syntactically. On the multi-level event extraction (MLEE) corpus test dataset, our method achieves an F-score of 79.75 percent, which outperforms the state-of-the-art systems.

摘要

从生物医学文献中提取生物医学事件在生物医学文本挖掘领域中起着重要作用,而触发词检测是生物医学事件抽取的关键步骤。我们提出了一种触发词检测的两阶段方法,将触发词检测分为识别阶段和分类阶段,并在每个阶段选择不同的特征。在第一阶段,我们选择更适合识别的特征,在第二阶段,采用更有助于分类的特征。此外,我们还集成了词向量来表示词的语义和句法。在多层次事件抽取(MLEE)语料测试数据集上,我们的方法取得了 79.75%的 F 值,优于最先进的系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验