Suppr超能文献

促红细胞生成素:缺血性脑的内源性保护。

Erythropoietin: Endogenous Protection of Ischemic Brain.

机构信息

Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, United States.

Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, United States; Tarleton State University, Fort Worth, TX, United States.

出版信息

Vitam Horm. 2017;105:197-232. doi: 10.1016/bs.vh.2017.01.002. Epub 2017 Mar 6.

Abstract

The human brain requires uninterrupted delivery of blood-borne oxygen and nutrients to sustain its function. Focal ischemia, particularly, ischemic stroke, and global ischemia imposed by cardiac arrest disrupt the brain's fuel supply. The resultant ATP depletion initiates a complex injury cascade encompassing intracellular Ca overload, glutamate excitotoxicity, oxido-nitrosative stress, extracellular matrix degradation, and inflammation, culminating in neuronal and astroglial necrosis and apoptosis, neurocognitive deficits, and even death. Unfortunately, brain ischemia has proven refractory to pharmacological intervention. Many promising treatments afforded brain protection in animal models of focal and global ischemia, but failed to improve survival and neurocognitive recovery of stroke and cardiac arrest patients in randomized clinical trials. The culprits are the blood-brain barrier (BBB) that limits transferral of medications to the brain parenchyma, and the sheer complexity of the injury cascade, which presents a daunting array of targets unlikely to respond to monotherapies. Erythropoietin is a powerful neuroprotectant capable of interrupting multiple aspects of the brain injury cascade. Preclinical research demonstrates erythropoietin's ability to suppress glutamate excitotoxicity and intracellular Ca overload, dampen oxidative stress and inflammation, interrupt the apoptotic cascade, and preserve BBB integrity. However, the erythropoietin dosages required to traverse the BBB and achieve therapeutically effective concentrations in the brain parenchyma impose untoward side effects. Recent discoveries that hypoxia induces erythropoietin production within the brain and that neurons, astroglia, and cerebrovascular endothelium harbor membrane erythropoietin receptors, raise the exciting prospect of harnessing endogenous erythropoietin to protect the brain from the ravages of ischemia-reperfusion.

摘要

人类大脑需要源源不断地输送血液中的氧气和营养物质来维持其功能。局部缺血,特别是缺血性中风和心脏骤停引起的全脑缺血,会破坏大脑的燃料供应。由此导致的三磷酸腺苷(ATP)耗竭会引发一系列复杂的损伤级联反应,包括细胞内钙超载、谷氨酸兴奋性毒性、氧化应激、细胞外基质降解和炎症,最终导致神经元和星形胶质细胞坏死和凋亡、神经认知功能障碍,甚至死亡。不幸的是,脑缺血对药物干预具有抗性。许多有前途的治疗方法在局灶性和全脑缺血的动物模型中提供了脑保护,但在随机临床试验中未能改善中风和心脏骤停患者的生存率和神经认知恢复。罪魁祸首是血脑屏障(BBB),它限制了药物向脑实质的转移,以及损伤级联反应的纯粹复杂性,这呈现出一系列令人望而却步的靶点,不太可能对单一疗法产生反应。促红细胞生成素是一种强大的神经保护剂,能够阻断多个脑损伤级联反应。临床前研究表明促红细胞生成素能够抑制谷氨酸兴奋性毒性和细胞内钙超载,减轻氧化应激和炎症,中断细胞凋亡级联反应,并维持血脑屏障的完整性。然而,要穿过血脑屏障并在脑实质中达到治疗有效的浓度,所需的促红细胞生成素剂量会带来不良的副作用。最近的发现表明,缺氧会在大脑内部诱导促红细胞生成素的产生,神经元、星形胶质细胞和脑血管内皮细胞都具有膜促红细胞生成素受体,这为利用内源性促红细胞生成素来保护大脑免受缺血再灌注的破坏带来了令人兴奋的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验