Suppr超能文献

改善电子病历数据的共同机遇。

A Shared Opportunity for Improving Electronic Medical Record Data.

作者信息

Baier Amanda W, Snyder Daniel J, Leahy Izabela C, Patak Lance S, Brustowicz Robert M

机构信息

From the *Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts; †Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts; and ‡Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, Seattle, Washington.

出版信息

Anesth Analg. 2017 Sep;125(3):952-957. doi: 10.1213/ANE.0000000000002134.

Abstract

With the recent rapid adoption of electronic medical records (EMRs), studies reporting results based on EMR data have become increasingly common. While analyzing data extracted from our EMR for a retrospective study, we identified various types of erroneous data entries. This report investigates the root causes of the incompleteness, inconsistency, and inaccuracy of the medical records analyzed in our study. While experienced health information management professionals are well aware of the many shortcomings with EMR data, the aims of this case study are to highlight the significance of the negative impact of erroneous EMR data, to provide fundamental principles for managing EMRs, and to provide recommendations to help facilitate the successful use of electronic health data, whether to inform clinical decisions or for clinical research.

摘要

随着近期电子病历(EMR)的迅速普及,基于电子病历数据报告结果的研究变得越来越普遍。在为一项回顾性研究分析从我们的电子病历中提取的数据时,我们发现了各种类型的错误数据录入。本报告调查了我们研究中所分析的医疗记录不完整、不一致和不准确的根本原因。虽然经验丰富的健康信息管理专业人员深知电子病历数据存在诸多缺点,但本案例研究的目的是强调错误电子病历数据负面影响的重要性,提供管理电子病历的基本原则,并提供建议以帮助促进电子健康数据的成功使用,无论是用于为临床决策提供信息还是用于临床研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验