Suppr超能文献

一种用于双聚类分析和检测条件相关共表达网络模块的 GPU 加速算法。

A GPU-accelerated algorithm for biclustering analysis and detection of condition-dependent coexpression network modules.

机构信息

Department of Microbiology, Immunology and Biochemistry, Memphis, TN, 38163, USA.

Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.

出版信息

Sci Rep. 2017 Jun 23;7(1):4162. doi: 10.1038/s41598-017-04070-4.

Abstract

In the analysis of large-scale gene expression data, it is important to identify groups of genes with common expression patterns under certain conditions. Many biclustering algorithms have been developed to address this problem. However, comprehensive discovery of functionally coherent biclusters from large datasets remains a challenging problem. Here we propose a GPU-accelerated biclustering algorithm, based on searching for the largest Condition-dependent Correlation Subgroups (CCS) for each gene in the gene expression dataset. We compared CCS with thirteen widely used biclustering algorithms. CCS consistently outperformed all the thirteen biclustering algorithms on both synthetic and real gene expression datasets. As a correlation-based biclustering method, CCS can also be used to find condition-dependent coexpression network modules. We implemented the CCS algorithm using C and implemented the parallelized CCS algorithm using CUDA C for GPU computing. The source code of CCS is available from https://github.com/abhatta3/Condition-dependent-Correlation-Subgroups-CCS.

摘要

在大规模基因表达数据分析中,重要的是要识别在某些条件下具有共同表达模式的基因群。已经开发了许多双聚类算法来解决这个问题。然而,从大型数据集全面发现功能一致的双聚类仍然是一个具有挑战性的问题。在这里,我们提出了一种基于在基因表达数据集中为每个基因搜索最大条件相关子群(CCS)的 GPU 加速双聚类算法。我们将 CCS 与十三种广泛使用的双聚类算法进行了比较。CCS 在合成和真实基因表达数据集上均优于所有十三种双聚类算法。作为一种基于相关性的双聚类方法,CCS 还可以用于发现条件相关的共表达网络模块。我们使用 C 实现了 CCS 算法,并使用 CUDA C 为 GPU 计算实现了并行化的 CCS 算法。CCS 的源代码可从 https://github.com/abhatta3/Condition-dependent-Correlation-Subgroups-CCS 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c33a/5482832/0f58e947861e/41598_2017_4070_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验