Suppr超能文献

3T下基于线性代数建模和灵敏度分布校正的高加速血管内T1、T2和质子密度映射

Highly Accelerated, Intravascular T1, T2, and Proton Density Mapping with Linear Algebraic Modeling and Sensitivity Profile Correction at 3T.

作者信息

Wang Guan, Zhang Yi, Hegde Shashank Sathyanarayana, Bottomley Paul A

机构信息

Dept. of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD, United States.

Russell H. Morgan Dept. of Radiology & Radiological Sciences, Johns Hopkins University, Baltimore, MD, United States.

出版信息

Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2016 May;24:2829.

Abstract

Vessel wall MRI with intravascular (IV) detectors can produce superior local signal-to-noise ratios (SNR) and generate high-resolution T, T, and proton density (PD) maps that could be used to automatically classify atherosclerotic lesion stage. However, long acquisition times potentially limit multi-parametric mapping. Here, for the first time, spectroscopy with linear algebraic modeling (SLAM) is applied to yield accurate compartment-average T, T and PD measures at least 10 times faster compared to a standard full k-space reconstructed MIX-TSE sequence at 3T. Simple phase and magnitude sensitivity corrections are incorporated into the SLAM reconstruction to compensate for IV detector non-uniformity.

摘要

带有血管内(IV)探测器的血管壁磁共振成像能够产生卓越的局部信噪比(SNR),并生成高分辨率的T1、T2和质子密度(PD)图谱,可用于自动对动脉粥样硬化病变阶段进行分类。然而,较长的采集时间可能会限制多参数成像。在此,首次应用线性代数建模光谱法(SLAM),与3T场强下的标准全k空间重建MIX-TSE序列相比,至少能快10倍地获得准确的组织平均T1、T2和PD测量值。简单的相位和幅度灵敏度校正被纳入SLAM重建中,以补偿IV探测器的不均匀性。

相似文献

1
Highly Accelerated, Intravascular T1, T2, and Proton Density Mapping with Linear Algebraic Modeling and Sensitivity Profile Correction at 3T.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2016 May;24:2829.
3
Ultrafast compartmentalized relaxation time mapping with linear algebraic modeling.
Magn Reson Med. 2018 Jan;79(1):286-297. doi: 10.1002/mrm.26675. Epub 2017 Apr 11.
4
Magnetic resonance Spectroscopy with Linear Algebraic Modeling (SLAM) for higher speed and sensitivity.
J Magn Reson. 2012 May;218:66-76. doi: 10.1016/j.jmr.2012.03.008. Epub 2012 Mar 28.
5
6
Highly accelerated chemical exchange saturation transfer (CEST) measurements with linear algebraic modeling.
Magn Reson Med. 2016 Jul;76(1):136-44. doi: 10.1002/mrm.25873. Epub 2015 Aug 24.
9
MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence.
Invest Radiol. 2009 Sep;44(9):585-97. doi: 10.1097/RLI.0b013e3181b4c1a1.

本文引用的文献

1
Automated classification of vessel disease based on high-resolution intravascular multi-parametric mapping MRI.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2015 May-Jun;2015:1659.
2
3
Magnetic resonance Spectroscopy with Linear Algebraic Modeling (SLAM) for higher speed and sensitivity.
J Magn Reson. 2012 May;218:66-76. doi: 10.1016/j.jmr.2012.03.008. Epub 2012 Mar 28.
5
RLSQ: T1, T2, and rho calculations, combining ratios and least squares.
Magn Reson Med. 1987 Dec;5(6):513-24. doi: 10.1002/mrm.1910050602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验