Wang Guan, Zhang Yi, Hegde Shashank Sathyanarayana, Bottomley Paul A
Dept. of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD, United States.
Russell H. Morgan Dept. of Radiology & Radiological Sciences, Johns Hopkins University, Baltimore, MD, United States.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2016 May;24:2829.
Vessel wall MRI with intravascular (IV) detectors can produce superior local signal-to-noise ratios (SNR) and generate high-resolution T, T, and proton density (PD) maps that could be used to automatically classify atherosclerotic lesion stage. However, long acquisition times potentially limit multi-parametric mapping. Here, for the first time, spectroscopy with linear algebraic modeling (SLAM) is applied to yield accurate compartment-average T, T and PD measures at least 10 times faster compared to a standard full k-space reconstructed MIX-TSE sequence at 3T. Simple phase and magnitude sensitivity corrections are incorporated into the SLAM reconstruction to compensate for IV detector non-uniformity.
带有血管内(IV)探测器的血管壁磁共振成像能够产生卓越的局部信噪比(SNR),并生成高分辨率的T1、T2和质子密度(PD)图谱,可用于自动对动脉粥样硬化病变阶段进行分类。然而,较长的采集时间可能会限制多参数成像。在此,首次应用线性代数建模光谱法(SLAM),与3T场强下的标准全k空间重建MIX-TSE序列相比,至少能快10倍地获得准确的组织平均T1、T2和PD测量值。简单的相位和幅度灵敏度校正被纳入SLAM重建中,以补偿IV探测器的不均匀性。