Suppr超能文献

基于委员会的主动学习在代理辅助粒子群优化昂贵问题中的应用。

Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive Problems.

出版信息

IEEE Trans Cybern. 2017 Sep;47(9):2664-2677. doi: 10.1109/TCYB.2017.2710978. Epub 2017 Jun 22.

Abstract

Function evaluations (FEs) of many real-world optimization problems are time or resource consuming, posing a serious challenge to the application of evolutionary algorithms (EAs) to solve these problems. To address this challenge, the research on surrogate-assisted EAs has attracted increasing attention from both academia and industry over the past decades. However, most existing surrogate-assisted EAs (SAEAs) either still require thousands of expensive FEs to obtain acceptable solutions, or are only applied to very low-dimensional problems. In this paper, a novel surrogate-assisted particle swarm optimization (PSO) inspired from committee-based active learning (CAL) is proposed. In the proposed algorithm, a global model management strategy inspired from CAL is developed, which searches for the best and most uncertain solutions according to a surrogate ensemble using a PSO algorithm and evaluates these solutions using the expensive objective function. In addition, a local surrogate model is built around the best solution obtained so far. Then, a PSO algorithm searches on the local surrogate to find its optimum and evaluates it. The evolutionary search using the global model management strategy switches to the local search once no further improvement can be observed, and vice versa. This iterative search process continues until the computational budget is exhausted. Experimental results comparing the proposed algorithm with a few state-of-the-art SAEAs on both benchmark problems up to 30 decision variables as well as an airfoil design problem demonstrate that the proposed algorithm is able to achieve better or competitive solutions with a limited budget of hundreds of exact FEs.

摘要

功能评估(FEs)许多现实世界的优化问题都需要时间或资源,这对进化算法(EAs)解决这些问题的应用提出了严重挑战。为了解决这个挑战,代理辅助进化算法的研究在过去几十年中引起了学术界和工业界越来越多的关注。然而,大多数现有的代理辅助进化算法(SAEAs)要么仍然需要数千次昂贵的 FEs 才能获得可接受的解决方案,要么只适用于非常低维的问题。在本文中,提出了一种新的基于委员会主动学习(CAL)的代理辅助粒子群优化(PSO)算法。在提出的算法中,开发了一种基于 CAL 的全局模型管理策略,该策略使用 PSO 算法根据代理集合搜索最佳和最不确定的解,并使用昂贵的目标函数对这些解进行评估。此外,还在迄今为止获得的最佳解周围构建了一个局部代理模型。然后,PSO 算法在局部代理上进行搜索,以找到其最优值并对其进行评估。一旦观察到没有进一步的改进,使用全局模型管理策略的进化搜索就会切换到局部搜索,反之亦然。这种迭代搜索过程将继续,直到计算预算耗尽。在基准问题(最高 30 个决策变量)以及翼型设计问题上,将提出的算法与几个最先进的 SAEAs 进行比较的实验结果表明,该算法在有限的数百次精确 FEs 预算内能够获得更好或有竞争力的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验