Suppr超能文献

洞悉离子液体在石墨烯上的双电层。

Insight into the Electrical Double Layer of an Ionic Liquid on Graphene.

机构信息

University of Illinois at Urbana-Champaign, Urbana, USA.

出版信息

Sci Rep. 2017 Jun 26;7(1):4225. doi: 10.1038/s41598-017-04576-x.

Abstract

Graphene is a promising next-generation conducting material with the potential to replace traditional electrode materials in supercapacitors. Since energy storage in supercapacitors relies on the electrolyte-electrode interface, here we elucidate the interfacial subnanometer structure of a single component liquid composed solely of cations and anions - an ionic liquid- on electrified graphene. We study the effect of applied potential on the interaction between graphene and a silicon tip in an ionic liquid and describe it within the framework of the Derjaguin-Landau-Verwey-Overbeck (DLVO) theory. The energy is stored in an electrical double layer composed of an extended Stern layer, which consists of multiple ion layers over ~2 nanometers, beyond which a diffuse layer forms to compensate the applied potential on graphene. The electrical double layer significantly responds to the applied potential, and it shows the transition from overscreening to crowding of counterions at the interface at the highest applied potentials. It is proposed that surface charging occurs through the adsorption of the imidazolium cation to unbiased graphene (likely due to π-π interactions) and that the surface potential is better compensated when counterion crowding happens. This study scrutinizes the electrified graphene-ionic liquid interface, with implications not only in the field of energy storage, but also in lubrication.

摘要

石墨烯是一种很有前途的下一代导电材料,有望取代超级电容器中的传统电极材料。由于超级电容器的储能依赖于电解质-电极界面,因此我们阐明了由阳离子和阴离子组成的单一成分液体(即离子液体)在带电石墨烯上的界面亚纳米结构。我们研究了外加电势对离子液体中石墨烯和硅尖端相互作用的影响,并在德热纳-朗道-维尔威-奥弗贝克(DLVO)理论框架内对其进行了描述。能量存储在由扩展的斯特恩层组成的双电层中,斯特恩层由多个离子层组成,厚度约为 2 纳米,超过该厚度后形成扩散层以补偿石墨烯上的外加电势。双电层对外加电势有显著响应,在最高外加电势下,它表现出从屏蔽过度到界面处反离子拥挤的转变。据提出,表面充电是通过咪唑阳离子吸附到无偏置石墨烯上发生的(可能由于π-π相互作用),并且当反离子拥挤发生时,表面电势得到更好的补偿。本研究仔细研究了带电石墨烯-离子液体界面,这不仅对储能领域,而且对润滑领域都有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f2c/5484676/999fd654a1e5/41598_2017_4576_Fig1_HTML.jpg

相似文献

1
Insight into the Electrical Double Layer of an Ionic Liquid on Graphene.
Sci Rep. 2017 Jun 26;7(1):4225. doi: 10.1038/s41598-017-04576-x.
2
Surface structure at the ionic liquid-electrified metal interface.
Acc Chem Res. 2008 Mar;41(3):421-31. doi: 10.1021/ar700185h. Epub 2008 Jan 31.
3
Weighing the surface charge of an ionic liquid.
Nanoscale. 2015 Oct 14;7(38):16039-45. doi: 10.1039/c5nr03965g. Epub 2015 Sep 15.
4
Charge Storage Mechanisms of Single-Layer Graphene in Ionic Liquid.
J Am Chem Soc. 2019 Oct 23;141(42):16559-16563. doi: 10.1021/jacs.9b07134. Epub 2019 Oct 10.
5
Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors.
ACS Appl Mater Interfaces. 2016 Aug 3;8(30):19558-66. doi: 10.1021/acsami.6b06753. Epub 2016 Jul 20.
6
Surface Curvature Enhances the Electrotunability of Ionic Liquid Lubrication.
Langmuir. 2024 Feb 9. doi: 10.1021/acs.langmuir.3c03519.
7
Nanostructure of the Ionic Liquid-Graphite Stern Layer.
ACS Nano. 2015 Jul 28;9(7):7608-20. doi: 10.1021/acsnano.5b02921. Epub 2015 Jun 15.
8
Molecular insights into the electric double layers of ionic liquids on Au(100) electrodes.
ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12556-65. doi: 10.1021/am502413m. Epub 2014 Jul 21.
9
The Li-ion rechargeable battery: a perspective.
J Am Chem Soc. 2013 Jan 30;135(4):1167-76. doi: 10.1021/ja3091438. Epub 2013 Jan 18.
10
Origins and Implications of Interfacial Capacitance Enhancements in C-Modified Graphene Supercapacitors.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):36860-36865. doi: 10.1021/acsami.8b10349. Epub 2018 Oct 22.

引用本文的文献

1
Structural Properties of [N1888][TFSI] Ionic Liquid: A Small Angle Neutron Scattering and Polarizable Molecular Dynamics Study.
J Phys Chem B. 2024 Nov 14;128(45):11313-11327. doi: 10.1021/acs.jpcb.4c06255. Epub 2024 Nov 5.
2
Graphene-Based Chemiresistor Sensors for Drinking Water Quality Monitoring.
Sensors (Basel). 2023 Dec 14;23(24):9828. doi: 10.3390/s23249828.
3
Water in the Electrical Double Layer of Ionic Liquids on Graphene.
ACS Nano. 2023 May 23;17(10):9347-9360. doi: 10.1021/acsnano.3c01043. Epub 2023 May 10.
4
Symmetrically Ion-Gated In-Plane Metal-Oxide Transistors for Highly Sensitive and Low-Voltage Driven Bioelectronics.
Adv Sci (Weinh). 2022 May;9(13):e2103275. doi: 10.1002/advs.202103275. Epub 2022 Mar 3.
5
Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
Sensors (Basel). 2022 Feb 15;22(4):1489. doi: 10.3390/s22041489.
8
Adsorption of Hydrophobic and Hydrophilic Ionic Liquids at the Au(111) Surface.
ACS Omega. 2018 Dec 21;3(12):18039-18051. doi: 10.1021/acsomega.8b02163. eCollection 2018 Dec 31.
9
Storing Energy in Biodegradable Electrochemical Supercapacitors.
ACS Omega. 2018 Oct 31;3(10):13869-13875. doi: 10.1021/acsomega.8b01980. Epub 2018 Oct 23.

本文引用的文献

1
Long range electrostatic forces in ionic liquids.
Chem Commun (Camb). 2017 Jan 19;53(7):1214-1224. doi: 10.1039/c6cc08820a.
2
Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid-water mixtures.
J Phys Condens Matter. 2016 Nov 23;28(46):464001. doi: 10.1088/0953-8984/28/46/464001. Epub 2016 Sep 14.
4
Molecular Resolution in situ Imaging of Spontaneous Graphene Exfoliation.
J Phys Chem Lett. 2016 Aug 18;7(16):3118-22. doi: 10.1021/acs.jpclett.6b01323. Epub 2016 Aug 1.
5
Effect of the environmental humidity on the bulk, interfacial and nanoconfined properties of an ionic liquid.
Phys Chem Chem Phys. 2016 Aug 10;18(32):22719-30. doi: 10.1039/c6cp03777a.
6
Probing the Surface Properties of Gold at Low Electrolyte Concentration.
Langmuir. 2016 Jul 26;32(29):7346-55. doi: 10.1021/acs.langmuir.6b01697. Epub 2016 Jul 12.
7
The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
J Phys Chem Lett. 2016 Jun 16;7(12):2157-63. doi: 10.1021/acs.jpclett.6b00867. Epub 2016 May 26.
8
Layering of ionic liquids on rough surfaces.
Nanoscale. 2016 Feb 21;8(7):4094-106. doi: 10.1039/c5nr07805a.
10
Nanolubrication by ionic liquids: molecular dynamics simulations reveal an anomalous effective rheology.
Phys Chem Chem Phys. 2015 Sep 21;17(35):23226-35. doi: 10.1039/c5cp03134f. Epub 2015 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验