Suppr超能文献

解析分子内 sp³ C-H 键铜催化羟化反应的作用机制。

Decoding the Mechanism of Intramolecular Cu-Directed Hydroxylation of sp C-H Bonds.

机构信息

Department of Chemistry, Southern Methodist University , Dallas, Texas 75275, United States.

Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

出版信息

J Org Chem. 2017 Aug 4;82(15):7887-7904. doi: 10.1021/acs.joc.7b01069. Epub 2017 Jul 14.

Abstract

The use of copper in directed C-H oxidation has been relatively underexplored. In a seminal example, Schönecker showed that copper and O promoted the hydroxylation of steroid-containing ligands. Recently, Baran (J. Am. Chem. Soc. 2015, 137, 13776) improved the reaction conditions to oxidize similar substrates with excellent yields. In both reports, the involvement of CuO intermediates was suggested. In this collaborative article, we studied the hydroxylation mechanism in great detail, resulting in the overhaul of the previously accepted mechanism and the development of improved reaction conditions. Extensive experimental evidence (spectroscopic characterization, kinetic analysis, intermolecular reactivity, and radical trap experiments) is provided to support each of the elementary steps proposed and the hypothesis that a key mononuclear LCu(OOR) intermediate undergoes homolytic O-O cleavage to generate reactive RO species, which are responsible for key C-H hydroxylation within the solvent cage. These key findings allowed the oxidation protocol to be reformulated, leading to improvements of the reaction cost, practicability, and isolated yield.

摘要

铜在定向 C-H 氧化中的应用相对较少被探索。在一个重要的例子中,Schönecker 表明铜和 O 促进了含甾体配体的羟化。最近,Baran(J. Am. Chem. Soc. 2015, 137, 13776)改进了反应条件,以优异的收率氧化类似的底物。在这两个报告中,都提出了 CuO 中间体的参与。在这篇合作文章中,我们详细研究了羟化机制,导致了之前被接受的机制的全面检修和改进反应条件的开发。大量的实验证据(光谱表征、动力学分析、分子间反应性和自由基捕获实验)提供了支持所提出的每个基本步骤的证据,以及假设一个关键的单核 LCu(OOR)中间体经历均裂 O-O 裂解,生成活性 RO 物种,这是溶剂笼内关键 C-H 羟化的原因。这些关键发现使得氧化方案得以重新制定,提高了反应成本、实用性和分离收率。

相似文献

1
Decoding the Mechanism of Intramolecular Cu-Directed Hydroxylation of sp C-H Bonds.
J Org Chem. 2017 Aug 4;82(15):7887-7904. doi: 10.1021/acs.joc.7b01069. Epub 2017 Jul 14.
2
Cu-promoted intramolecular hydroxylation of CH bonds using directing groups with varying denticity.
J Inorg Biochem. 2021 Oct;223:111557. doi: 10.1016/j.jinorgbio.2021.111557. Epub 2021 Jul 20.
4
Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
Acc Chem Res. 2015 Jul 21;48(7):2066-74. doi: 10.1021/acs.accounts.5b00140. Epub 2015 Jun 18.
6
[CuO](+) and [CuOH](2+) complexes: intermediates in oxidation catalysis?
Acc Chem Res. 2015 Jul 21;48(7):2126-31. doi: 10.1021/acs.accounts.5b00169. Epub 2015 Jun 15.
8
Copper-Mediated Selective Hydroxylation of a Non-activated C-H Bond in Steroids: A DFT Study of Schönecker's Reaction.
Chemistry. 2017 Jan 26;23(6):1427-1435. doi: 10.1002/chem.201604829. Epub 2016 Dec 27.

引用本文的文献

1
Mimicking the Reactivity of LPMOs with a Mononuclear Cu Complex.
Eur J Inorg Chem. 2024 May 22;27(15). doi: 10.1002/ejic.202300774. Epub 2024 Jan 8.
2
Cu-Promoted -Hydroxylation of sp Bonds with Concomitant Aromatic 1,2-Rearrangement Involving a Cu-oxyl-hydroxo Species.
Inorg Chem. 2024 Oct 28;63(43):20675-20688. doi: 10.1021/acs.inorgchem.4c03304. Epub 2024 Oct 18.
4
Divergent and gram-scale syntheses of (-)-veratramine and (-)-cyclopamine.
Nat Commun. 2024 Jun 22;15(1):5332. doi: 10.1038/s41467-024-49748-2.
6
Identifying Radical Pathways for Cu(I)/Cu(II) Relay Catalyzed Oxygenation via Online Coupled EPR/UV-Vis/Near-IR Monitoring.
Adv Sci (Weinh). 2024 Aug;11(29):e2402890. doi: 10.1002/advs.202402890. Epub 2024 May 29.
7
Synthesis of Quillaic Acid through Sustainable C-H Bond Activations.
J Org Chem. 2024 Apr 19;89(8):5491-5497. doi: 10.1021/acs.joc.3c02958. Epub 2024 Apr 10.
8
Total Synthesis and Late-Stage C-H Oxidations of -Trachylobane Natural Products.
Angew Chem Weinheim Bergstr Ger. 2022 Jan 17;134(3):e202113829. doi: 10.1002/ange.202113829. Epub 2021 Nov 27.

本文引用的文献

1
A bio-inspired synthesis of oxindoles by catalytic aerobic dual C-H functionalization of phenols.
Chem Sci. 2016 Jan 1;7(1):358-369. doi: 10.1039/c5sc02395e. Epub 2015 Oct 6.
2
Structural and Spectroscopic Characterization of a Mononuclear Hydroperoxo-Copper(II) Complex with Tripodal Pyridylamine Ligands.
Angew Chem Int Ed Engl. 1998 Apr 3;37(6):798-799. doi: 10.1002/(SICI)1521-3773(19980403)37:6<798::AID-ANIE798>3.0.CO;2-3.
3
Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity.
Chem Rev. 2017 Feb 8;117(3):2059-2107. doi: 10.1021/acs.chemrev.6b00636. Epub 2017 Jan 19.
4
Copper(I)-Dioxygen Adducts and Copper Enzyme Mechanisms.
Isr J Chem. 2016 Oct;56:9-10. doi: 10.1002/ijch.201600025. Epub 2016 Jul 26.
5
Copper-Mediated Selective Hydroxylation of a Non-activated C-H Bond in Steroids: A DFT Study of Schönecker's Reaction.
Chemistry. 2017 Jan 26;23(6):1427-1435. doi: 10.1002/chem.201604829. Epub 2016 Dec 27.
6
Copper-Catalyzed Oxidation of Alkanes with H2 O2 under a Fenton-like Regime.
Angew Chem Int Ed Engl. 2016 Oct 4;55(41):12873-6. doi: 10.1002/anie.201607216. Epub 2016 Sep 9.
7
A Catalyst-Controlled Aerobic Coupling of ortho-Quinones and Phenols Applied to the Synthesis of Aryl Ethers.
Angew Chem Int Ed Engl. 2016 Sep 12;55(38):11543-7. doi: 10.1002/anie.201606359. Epub 2016 Aug 11.
8
Direct Copper(III) Formation from O2 and Copper(I) with Histamine Ligation.
J Am Chem Soc. 2016 Aug 10;138(31):9986-95. doi: 10.1021/jacs.6b05538. Epub 2016 Jul 28.
10
Evolution of C-H Bond Functionalization from Methane to Methodology.
J Am Chem Soc. 2016 Jan 13;138(1):2-24. doi: 10.1021/jacs.5b08707. Epub 2015 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验