Department of Neurology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China.
Department of Emergency Medicine, Yidu Central Hospital of Weifang, Qingzhou, Shandong 262500, P.R. China.
Int J Mol Med. 2017 Aug;40(2):549-557. doi: 10.3892/ijmm.2017.3035. Epub 2017 Jun 21.
Hypoxic‑ischemia stress causes severe brain injury, leading to death and disability worldwide. Although it has been reported that endoplasmic reticulum (ER) stress is an essential step in the progression of hypoxia or ischemia‑induced brain injury, the underlying molecular mechanisms are and have not yet been fully elucidated. Accumulating evidence has indicated that both nitric oxide (NO) and hydrogen sulfide (H2S) play an important role in the development of cerebral ischemic injury. In the present study, we aimed to investigate the effect of the association between NO signaling and the cystathionine β‑synthase (CBS)/H2S system on ER stress in a cell model of cerebral hypoxia‑ischemia injury. We found that oxygen‑glucose deprivation (OGD) markedly increased the NO level and neuronal NO synthase (nNOS) activity. 3‑Bromo‑7‑nitroindazole (3‑Br‑7‑NI), a relatively selective nNOS inhibitor, abolished the OGD‑induced inhibition of cell viability and the increased expression of ER stress‑related proteins, including glucose‑regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and cleaved caspase‑12 in PC12 cells, indicating the contribution of excessive nNOS/NO signaling to OGD‑induced ER stress. Furthermore, we found that OGD increased the phosphorylated AMP‑activated protein kinase (p‑AMPK)/AMPK ratio, and the AMPK activator, 5‑aminoimidazole‑4‑carboxamide‑1‑β‑D‑ribofuranoside (AICAR), attenuated the effects on OGD‑induced ER stress, suggesting that OGD‑induced NO overproduction results in AMPK activation in PC12 cells. We also found that OGD induced the downregulation of the CBS/H2S system, as indicated by the decreased H2S level in the culture supernatant and CBS activity in PC12 cells. In addition, we found that treatment with NaHS (a H2S donor) or S‑adenosyl‑L‑methionine (SAM, a CBS agonist) mitigated OGD‑induced ER stress, as well as the NO level, nNOS activity and AMPK phosphorylation in PC12 cells. On the whole, these results suggest that the inhibition of the CBS/H2S system, which facilitated excessive nNOS/NO/AMPK activation, contributes to OGD‑induced ER stress.
缺氧缺血应激会导致严重的脑损伤,在全球范围内导致死亡和残疾。尽管已经报道内质网(ER)应激是缺氧或缺血性脑损伤进展的重要步骤,但潜在的分子机制尚未完全阐明。越来越多的证据表明,一氧化氮(NO)和硫化氢(H2S)都在脑缺血性损伤的发展中发挥重要作用。在本研究中,我们旨在探讨 NO 信号转导与胱硫醚 β-合酶(CBS)/H2S 系统之间的关联对脑缺氧缺血损伤细胞模型中 ER 应激的影响。我们发现,氧葡萄糖剥夺(OGD)可显著增加 NO 水平和神经元型一氧化氮合酶(nNOS)活性。相对选择性的 nNOS 抑制剂 3-溴-7-硝基吲唑(3-Br-7-NI)可消除 OGD 诱导的细胞活力抑制作用,以及 ER 应激相关蛋白(包括葡萄糖调节蛋白 78(GRP78)、C/EBP 同源蛋白(CHOP)和切割的半胱天冬酶-12)的表达增加,表明过度的 nNOS/NO 信号转导对 OGD 诱导的 ER 应激的贡献。此外,我们发现 OGD 增加了磷酸化的 AMP 激活蛋白激酶(p-AMPK)/AMPK 比值,而 AMPK 激活剂 5-氨基咪唑-4-甲酰胺-1-β-D-核糖呋喃糖苷(AICAR)可减轻对 OGD 诱导的 ER 应激的影响,提示 OGD 诱导的 NO 过度产生导致 PC12 细胞中 AMPK 激活。我们还发现 OGD 诱导 CBS/H2S 系统下调,表现为培养上清液中 H2S 水平降低和 PC12 细胞中 CBS 活性降低。此外,我们发现 NaHS(H2S 供体)或 S-腺苷-L-蛋氨酸(SAM,CBS 激动剂)治疗可减轻 OGD 诱导的 ER 应激,以及 PC12 细胞中的 NO 水平、nNOS 活性和 AMPK 磷酸化。总的来说,这些结果表明,抑制 CBS/H2S 系统促进了过度的 nNOS/NO/AMPK 激活,从而导致 OGD 诱导的 ER 应激。