Brès J, Clauzel A M, Pistre M C, Rachmat H, Bressolle F
Bull Eur Physiopathol Respir. 1985 Sep-Oct;21(5):19s-34s.
The metabolism of the main beta-adrenoceptor stimulants which are not catechol derivatives involves conjugation with glucuronic or sulphuric acids in several animal species and conjugation with sulphuric acid in man. These drugs are not metabolized by MAO like isoproterenol or by COMT like the catechol derivatives: isoproterenol, trimetoquinol, hexoprenaline and rimiterol. Sulphate conjugation, in man, increases with the number of hydroxy groups. For salbutamol, pirbuterol, terbutaline and fenoterol, about 30%, 30%, 15% and 10% are respectively present in plasma as the unchanged active compound. Clenbuterol, a new specific beta 2-adrenoceptor stimulant, is a 4-amino-3,5 dichloro-benzene derivative and cannot be conjugated. It is cleared from the body mainly by the renal route (43% of the administered dose) and has eight minor metabolites, identical in several animal species and in man. Tulobuterol with no hydroxy substitute does not undergo conjugation, but is metabolized to 4-hydroxy tulobuterol. This metabolite is shown to be eight times more potent than tulobuterol. Metabolism depends greatly upon the route of administration: intravenous, subcutaneous, oral, by aerosol or instillation into the bronchial tree. Conjugation or COMT inactivation can take place in the gut wall (terbutaline), in lungs (isoproterenol, terbutaline, rimiterol) or by hepatic first-pass. These processes decrease the amount of drug reaching the blood and the receptor sites. Metabolism in the lung is important for ibuterol (terbutaline diisobutyrate), which is more lipophilic than terbutaline and spreads throughout tissues where it is hydrolyzed to active terbutaline. Biotransformations are determined by environmental or genetic factors and by the associated therapy and can change dramatically from one patient to another (interindividual variability) or for the same patient by multiple dosing (intra-individual variability). These differences in the rates of the metabolism can explain, partly, the differences observed in the response to beta-adrenoceptor stimulants by responder or non-responder patients. Decision about a therapeutic dosage regiment involves the choice of the drug, of the route of administration and of the dose. This choice is made on the basis of the dose/response relationship. In the kinetic approach, pharmacokinetic data obtained after a single dose facilitate the development of an appropriate dosage regimen.
非儿茶酚衍生物的主要β-肾上腺素能兴奋剂在几种动物体内的代谢涉及与葡萄糖醛酸或硫酸结合,而在人体内则与硫酸结合。这些药物不像异丙肾上腺素那样被单胺氧化酶代谢,也不像儿茶酚衍生物(如异丙肾上腺素、曲美喹诺、海索那林和利米特罗)那样被儿茶酚-O-甲基转移酶代谢。在人体内,硫酸结合作用会随着羟基数量的增加而增强。对于沙丁胺醇、吡布特罗、特布他林和非诺特罗,血浆中分别约有30%、30%、15%和10%以未改变的活性化合物形式存在。克仑特罗是一种新型特异性β₂-肾上腺素能兴奋剂,是一种4-氨基-3,5-二氯苯衍生物,不能进行结合反应。它主要通过肾脏途径从体内清除(占给药剂量的43%),有八种次要代谢产物,在几种动物和人体内是相同的。无羟基取代的妥布特罗不发生结合反应,但会代谢为4-羟基妥布特罗。这种代谢产物的效力比妥布特罗高八倍。代谢情况在很大程度上取决于给药途径:静脉注射、皮下注射、口服、气雾剂给药或滴入支气管树。结合反应或儿茶酚-O-甲基转移酶失活可发生在肠壁(特布他林)、肺(异丙肾上腺素、特布他林、利米特罗)或肝脏首过效应中。这些过程会减少到达血液和受体部位的药物量。肺部代谢对异丁特罗(特布他林二异丁酸酯)很重要,它比特布他林更具脂溶性,可扩散到整个组织,在那里水解为活性特布他林。生物转化由环境或遗传因素以及相关治疗决定,在不同患者之间(个体间变异性)或同一患者多次给药时(个体内变异性)可能会有显著变化。代谢速率的这些差异可以部分解释反应者或无反应者患者对β-肾上腺素能兴奋剂反应中观察到的差异。关于治疗剂量方案的决策涉及药物、给药途径和剂量的选择。这种选择是基于剂量/反应关系做出的。在动力学方法中,单次给药后获得的药代动力学数据有助于制定合适的剂量方案。