Suppr超能文献

脂质代谢酶的计算功能分析

Computational Functional Analysis of Lipid Metabolic Enzymes.

作者信息

Bagnato Carolina, Have Arjen Ten, Prados María B, Beligni María V

机构信息

Instituto de Energía y Desarrollo Sustentable-Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, S. C. de Bariloche, 8400, Río Negro, Argentina.

Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, 7600, Argentina.

出版信息

Methods Mol Biol. 2017;1609:195-216. doi: 10.1007/978-1-4939-6996-8_17.

Abstract

The computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism. In addition, some enzymes that do not have sequence similarity catalyze similar or even identical reactions. Some of the challenges that, albeit not unique, are more specific to lipid metabolism refer to the high compartmentalization of the routes, the catalysis in hydrophobic environments and, related to this, the function near or in biological membranes.In this work, we provide guidelines intended to assist in the proper functional annotation of lipid metabolic enzymes, based on previous experiences related to the phospholipase D superfamily and the annotation of the triglyceride synthesis pathway in algae. We describe a pipeline that starts with the definition of an initial set of sequences to be used in similarity-based searches and ends in the reconstruction of phylogenies. We also mention the main issues that have to be taken into consideration when using tools to analyze subcellular localization, hydrophobicity patterns, or presence of transmembrane domains in lipid metabolic enzymes.

摘要

与整个蛋白质领域相比,参与脂质代谢的酶的计算分析既有共同的挑战,也有独特的挑战。干扰脂质代谢酶功能注释且与其他途径共有的一些障碍包括合适起始数据集的定义、可靠多序列比对的构建、适当进化模型的定义以及具有高统计支持的系统发育树的重建,特别是对于大型数据集。大多数参与脂质代谢的酶属于复杂的超家族,其中许多成员不参与脂质代谢。此外,一些没有序列相似性的酶催化相似甚至相同的反应。一些虽非脂质代谢所特有但更具脂质代谢特异性的挑战涉及途径的高度区室化、在疏水环境中的催化作用,以及与此相关的在生物膜附近或膜中的功能。在这项工作中,我们基于先前与磷脂酶D超家族以及藻类甘油三酯合成途径注释相关的经验,提供旨在协助脂质代谢酶进行正确功能注释的指南。我们描述了一个流程,该流程从定义用于基于相似性搜索的初始序列集开始,到系统发育重建结束。我们还提到了在使用工具分析脂质代谢酶的亚细胞定位、疏水性模式或跨膜结构域存在情况时必须考虑的主要问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验