Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Alameda #340, Santiago, Chile.
Facultad de Química, Pontificia Universidad Católica de Chile , Alameda #340, Santiago, Chile.
ACS Chem Neurosci. 2017 Oct 18;8(10):2168-2179. doi: 10.1021/acschemneuro.7b00089. Epub 2017 Jul 24.
A better comprehension on how different molecular components of the serotonergic system contribute to the adequate regulation of behaviors in animals is essential in the interpretation on how they are involved in neuropsychiatric and pathological disorders. It is possible to study these components in "simpler" animal models including the fly Drosophila melanogaster, given that most of the components of the serotonergic system are conserved between vertebrates and invertebrates. Here we decided to advance our understanding on how the serotonin plasma membrane transporter (SERT) contributes to serotonergic neurotransmission and behaviors in Drosophila. In doing this, we characterized for the first time a mutant for Drosophila SERT (dSERT) and additionally used a highly selective serotonin-releasing drug, 4-methylthioamphetamine (4-MTA), whose mechanism of action involves the SERT protein. Our results show that dSERT mutant animals exhibit an increased survival rate in stress conditions, increased basal motor behavior, and decreased levels in an anxiety-related parameter, centrophobism. We also show that 4-MTA increases the negative chemotaxis toward a strong aversive odorant, benzaldehyde. Our neurochemical data suggest that this effect is mediated by dSERT and depends on the 4-MTA-increased release of serotonin in the fly brain. Our in silico data support the idea that these effects are explained by specific interactions between 4-MTA and dSERT. In sum, our neurochemical, in silico, and behavioral analyses demonstrate the critical importance of the serotonergic system and particularly dSERT functioning in modulating several behaviors in Drosophila.
更好地理解 5-羟色胺能系统的不同分子成分如何有助于动物行为的适当调节,对于解释它们如何参与神经精神和病理障碍至关重要。在包括果蝇(Drosophila melanogaster)在内的“更简单”的动物模型中研究这些成分是可能的,因为 5-羟色胺能系统的大多数成分在脊椎动物和无脊椎动物之间是保守的。在这里,我们决定深入了解 5-羟色胺质膜转运蛋白(SERT)如何参与果蝇的 5-羟色胺能神经传递和行为。为此,我们首次对果蝇 SERT(dSERT)的突变体进行了特征描述,此外还使用了一种高度选择性的释放 5-羟色胺的药物 4-甲基硫代苯丙胺(4-MTA),其作用机制涉及 SERT 蛋白。我们的结果表明,dSERT 突变体动物在应激条件下具有更高的存活率、增加的基础运动行为和减少的与焦虑相关的参数——中心恐惧症。我们还表明,4-MTA 增加了对强烈厌恶气味苯甲醛的负趋化性。我们的神经化学数据表明,这种效应是由 dSERT 介导的,并且取决于 4-MTA 增加了果蝇大脑中 5-羟色胺的释放。我们的计算机模拟数据支持这样一种观点,即这些效应是由 4-MTA 和 dSERT 之间的特定相互作用解释的。总之,我们的神经化学、计算机模拟和行为分析表明,5-羟色胺能系统特别是 dSERT 的功能对果蝇的几种行为的调节具有至关重要的意义。