Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
Biochim Biophys Acta Gen Subj. 2017 Sep;1861(9):2293-2303. doi: 10.1016/j.bbagen.2017.06.022. Epub 2017 Jun 29.
Dynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis.
Thus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol.
Dynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma.
Our results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.
动力蛋白是一种具有机械化学和催化特性的多结构域 GTP 酶,参与内吞作用过程中质膜上囊泡的断裂。新的证据表明,动力蛋白也参与儿茶酚胺的胞吐释放,这表明存在一种由动力蛋白调节的结构,将内吞作用与胞吐作用偶联。
因此,我们在这里采用高分辨率细胞贴附电容测量和超分辨率结构照明显微镜,直接观察用不同的动力蛋白活性药理学调节剂处理的培养大鼠星形胶质细胞中单个囊泡与质膜的相互作用。荧光葡聚糖和疏水性质膜标记物 DiD 用于监测囊泡在质膜周空间和细胞胞质中的摄取和分布。
Dynole™-34-2 和 Dyngo™-4a 抑制动力蛋白可防止囊泡内吞入胞质,并降低通过狭窄融合孔附着在质膜上的囊泡的融合孔电导,该融合孔通过反复开放和关闭 - 闪烁而消失。相比之下,动力蛋白激活剂 Ryngo™-1-23 促进囊泡内吞作用,并通过延长闭合和缩短开放融合孔停留时间来促进融合孔关闭。免疫细胞化学染色显示葡聚糖摄取到动力蛋白阳性囊泡中,并且在动力蛋白抑制后摄取到 Syt4 和 VAMP2 阳性囊泡中的葡聚糖增加,表明这些囊泡在质膜上的保留时间延长。
我们的研究结果为动力蛋白在调节内吞和胞吐囊泡融合孔几何形状和动力学中的作用提供了直接证据,表明它们共享一个共同的由动力蛋白调节的结构中间物,即融合孔。