Suppr超能文献

使用线性回归模型改进对总手术时间的预测

Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling.

作者信息

Edelman Eric R, van Kuijk Sander M J, Hamaekers Ankie E W, de Korte Marcel J M, van Merode Godefridus G, Buhre Wolfgang F F A

机构信息

Faculty of Health, Medicine and Life Sciences, Department of Health Services Research, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands.

Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Center+, Maastricht, Netherlands.

出版信息

Front Med (Lausanne). 2017 Jun 19;4:85. doi: 10.3389/fmed.2017.00085. eCollection 2017.

Abstract

For efficient utilization of operating rooms (ORs), accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT) per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT) and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA) physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT). We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT). TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related benefits.

摘要

为了高效利用手术室(OR),需要制定准确的指定时间段安排和患者病例顺序。这些规划工具的质量取决于对每个病例总手术时间(TPT)的准确预测。在本文中,我们尝试通过使用基于估计的外科医生控制时间(eSCT)和其他与TPT相关的变量的线性回归模型来提高TPT预测的准确性。我们从荷兰六个学术医院在2012年至2016年进行的所有手术的荷兰基准数据库中提取了数据。最终数据集包含79,983条记录,描述了199,772小时的总手术室时间。后续分析中纳入的TPT潜在预测因素包括eSCT、患者年龄、手术类型、美国麻醉医师协会(ASA)身体状况分类以及使用的麻醉类型。首先,我们根据先前描述的固定比率模型为每个记录计算预测的TPT,将eSCT乘以1.33。这个数字基于van Veen-Berkx等人的研究,该研究表明SCT的33%通常是麻醉控制时间(ACT)的良好近似值。然后,我们系统地测试了所有可能的线性回归模型,以使用eSCT结合其他可用自变量来预测TPT。此外,再次测试所有回归模型,不将eSCT作为预测因素来单独预测ACT(通过添加SCT得到TPT)。使用基于自变量eSCT、手术类型、ASA分类和麻醉类型的线性回归模型可以最准确地预测TPT。该模型的表现明显优于固定比率模型和单独预测ACT的方法。在规划和排序算法中利用这些更准确的预测可能会提高手术室的利用率,从而带来显著的财务和生产力相关效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/949a/5475434/7a3568c112fb/fmed-04-00085-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验