Suppr超能文献

远程激光消融电喷雾电离-质谱联用同轴射流和气体动力学辅助提高灵敏度和代谢物覆盖度。

Enhanced sensitivity and metabolite coverage with remote laser ablation electrospray ionization-mass spectrometry aided by coaxial plume and gas dynamics.

机构信息

Department of Chemistry, The George Washington University, Washington, DC 20052, USA.

出版信息

Analyst. 2017 Aug 21;142(17):3157-3164. doi: 10.1039/c7an00805h.

Abstract

Laser ablation electrospray ionization-mass spectrometry (LAESI-MS) allows for direct analysis of biological tissues at atmospheric pressure with minimal to no sample preparation. In LAESI, a mid-IR laser beam (λ = 2.94 μm) is focused onto the sample to produce an ablation plume that is intercepted and ionized by an electrospray at the inlet of the mass spectrometer. In the remote LAESI platform, the ablation process is removed from the mass spectrometer inlet and takes place in an ablation chamber, allowing for incorporation of additional optics for microscopic imaging and targeting of specific features of the sample for laser ablation sampling. The ablated material is transported by a carrier gas through a length of tubing, delivering it to the MS inlet where it is intercepted and ionized by an electrospray. Previous proof-of-principle studies used a prolate spheroid ablation chamber with the carrier gas flow perpendicular to the ablation plume. This design resulted in significant losses of MS signal in comparison to conventional LAESI. Here we present a newly designed conical inner volume ablation chamber that radially confines the ablation plume produced in transmission geometry. The carrier gas flow and the expanding ablation plume are aligned in a coaxial configuration to improve the transfer of ablated particles. This new design not only recovered the losses observed with the prolate spheroid chamber design, but was found to provide an ∼12-15% increase in the number of metabolite peaks detected from plant leaves and tissue sections relative to conventional LAESI.

摘要

激光烧蚀电喷雾电离-质谱(LAESI-MS)允许在大气压力下直接分析生物组织,几乎无需样品制备。在 LAESI 中,中红外激光束(λ=2.94μm)聚焦在样品上,产生烧蚀羽流,该羽流在质谱仪入口处被电喷雾拦截和电离。在远程 LAESI 平台中,烧蚀过程从质谱仪入口处移开,并在烧蚀室中进行,允许结合额外的光学器件进行微观成像和针对样品的特定特征进行激光烧蚀采样的靶向。烧蚀材料通过载气通过一段管道输送,将其输送到 MS 入口处,在那里它被电喷雾拦截和电离。以前的原理验证研究使用了具有载气流垂直于烧蚀羽流的长球型烧蚀室。与传统的 LAESI 相比,这种设计导致 MS 信号显著损失。在这里,我们提出了一种新设计的圆锥形内部体积烧蚀室,该烧蚀室以传输几何形状径向限制产生的烧蚀羽流。载气流和膨胀的烧蚀羽流在同轴配置中对齐,以改善烧蚀颗粒的转移。这种新设计不仅恢复了与长球型烧蚀室设计观察到的损失,而且还发现与传统的 LAESI 相比,从植物叶片和组织切片中检测到的代谢物峰的数量增加了约 12-15%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验