Department of Physics, University of Lancaster, Lancaster, LA1 4YB, UK.
School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia.
Nanoscale. 2017 Jul 20;9(28):9902-9912. doi: 10.1039/c7nr01829k.
Metal complexes are receiving increased attention as molecular wires in fundamental studies of the transport properties of metal|molecule|metal junctions. In this context we report the single-molecule conductance of a systematic series of d square-planar platinum(ii) trans-bis(alkynyl) complexes with terminal trimethylsilylethynyl (C[triple bond, length as m-dash]CSiMe) contacting groups, e.g. trans-Pt{C[triple bond, length as m-dash]CCHC[triple bond, length as m-dash]CSiMe}(PR) (R = Ph or Et), using a combination of scanning tunneling microscopy (STM) experiments in solution and theoretical calculations using density functional theory and non-equilibrium Green's function formalism. The measured conductance values of the complexes (ca. 3-5 × 10G) are commensurate with similarly structured all-organic oligo(phenylene ethynylene) and oligo(yne) compounds. Based on conductance and break-off distance data, we demonstrate that a PPh supporting ligand in the platinum complexes can provide an alternative contact point for the STM tip in the molecular junctions, orthogonal to the terminal C[triple bond, length as m-dash]CSiMe group. The attachment of hexyloxy side chains to the diethynylbenzene ligands, e.g. trans-Pt{C[triple bond, length as m-dash]CCH(Ohex)C[triple bond, length as m-dash]CSiMe}(PPh) (Ohex = OCH), hinders contact of the STM tip to the PPh groups and effectively insulates the molecule, allowing the conductance through the full length of the backbone to be reliably measured. The use of trialkylphosphine (PEt), rather than triarylphosphine (PPh), ancillary ligands at platinum also eliminates these orthogonal contacts. These results have significant implications for the future design of organometallic complexes for studies in molecular junctions.
金属配合物作为金属-分子-金属结输运性质基础研究中的分子导线受到越来越多的关注。在这方面,我们报道了一系列系统的 d 平面正方形铂(ii)反式-双(炔基)配合物的单分子电导,这些配合物具有末端三甲基硅基乙炔基(C[三键,长度为 m-dash]CSiMe)接触基团,例如 trans-Pt{C[三键,长度为 m-dash]CCHC[三键,长度为 m-dash]CSiMe}(PR)(R = Ph 或 Et),使用扫描隧道显微镜(STM)实验在溶液中结合和理论计算使用密度泛函理论和非平衡格林函数形式。配合物的测量电导值(约 3-5×10G)与类似结构的全有机寡聚(苯乙炔)和寡聚(炔)化合物相符。基于电导和断裂距离数据,我们证明了铂配合物中的 PPh 支撑配体可以为 STM 尖端在分子结中提供替代接触点,与末端 C[三键,长度为 m-dash]CSiMe 基团正交。将己氧基侧链连接到二乙炔基苯配体上,例如 trans-Pt{C[三键,长度为 m-dash]CCH(Ohex)C[三键,长度为 m-dash]CSiMe}(PPh)(Ohex = OCH),阻碍了 STM 尖端与 PPh 基团的接触,并有效地隔离了分子,从而可以可靠地测量通过骨架全长的电导。在铂上使用三烷基膦(PEt)而不是三芳基膦(PPh)辅助配体也消除了这些正交接触。这些结果对未来设计用于分子结研究的有机金属配合物具有重要意义。