Suppr超能文献

可部署的液体透镜和反射镜与腔内治疗超声施源器的集成:增强穿透深度和焦点增益的初步研究。

Integration of deployable fluid lenses and reflectors with endoluminal therapeutic ultrasound applicators: Preliminary investigations of enhanced penetration depth and focal gain.

机构信息

Thermal Therapy Research Group, University of California San Francisco, 2340 Sutter Street, S341, San Francisco, CA, 94115, USA.

University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, University of California, CA, USA.

出版信息

Med Phys. 2017 Oct;44(10):5339-5356. doi: 10.1002/mp.12458. Epub 2017 Aug 8.

Abstract

PURPOSE

Catheter-based ultrasound applicators can generate thermal ablation of tissues adjacent to body lumens, but have limited focusing and penetration capabilities due to the small profile of integrated transducers required for the applicator to traverse anatomical passages. This study investigates a design for an endoluminal or laparoscopic ultrasound applicator with deployable acoustic reflector and fluid lens components, which can be expanded after device delivery to increase the effective acoustic aperture and allow for deeper and dynamically adjustable target depths. Acoustic and biothermal theoretical studies, along with benchtop proof-of-concept measurements, were performed to investigate the proposed design.

METHODS

The design schema consists of an array of tubular transducer(s) situated at the end of a catheter assembly, surrounded by an expandable water-filled conical balloon with a secondary reflective compartment that redirects acoustic energy distally through a plano-convex fluid lens. By controlling the lens fluid volume, the convex surface can be altered to adjust the focal length or collapsed for device insertion or removal. Acoustic output of the expanded applicator assembly was modeled using the rectangular radiator method and secondary sources, accounting for reflection and refraction at interfaces. Parametric studies of transducer radius (1-5 mm), height (3-25 mm), frequency (1.5-3 MHz), expanded balloon diameter (10-50 mm), lens focal length (10-100 mm), lens fluid (silicone oil, perfluorocarbon), and tissue attenuation (0-10 Np/m/MHz) on beam distributions and focal gain were performed. A proof-of-concept applicator assembly was fabricated and characterized using hydrophone-based intensity profile measurements. Biothermal simulations of endoluminal ablation in liver and pancreatic tissue were performed for target depths between 2 and 10 cm.

RESULTS

Simulations indicate that focal gain and penetration depth scale with the expanded reflector-lens balloon diameter, with greater achievable performance using perfluorocarbon lens fluid. Simulations of a 50 mm balloon OD, 10 mm transducer outer diameter (OD), 1.5 MHz assembly in water resulted in maximum intensity gain of ~170 (focal dimensions: ~12 mm length × 1.4 mm width) at ~5 cm focal depth and focal gains above 100 between 24 and 84 mm depths. A smaller (10 mm balloon OD, 4 mm transducer OD, 1.5 MHz) configuration produced a maximum gain of 6 at 9 mm depth. Compared to a conventional applicator with a fixed spherically focused transducer of 12 mm diameter, focal gain was enhanced at depths beyond 20 mm for assembly configurations with balloon diameters ≥ 20 mm. Hydrophone characterizations of the experimental assembly (31 mm reflector/lens diameter, 4.75 mm transducer radius, 1.7 MHz) illustrated focusing at variable depths between 10-70 mm with a maximum gain of ~60 and demonstrated agreement with theoretical simulations. Biothermal simulations (30 s sonication, 75 °C maximum) indicate that investigated applicator assembly configurations, at 30 mm and 50 mm balloon diameters, could create localized ellipsoidal thermal lesions increasing in size from 10 to 55 mm length × 3-6 mm width in liver tissue as target depth increased from 2 to 10 cm.

CONCLUSIONS

Preliminary theoretical and experimental analysis demonstrates that combining endoluminal ultrasound with an expandable acoustic reflector and fluid lens assembly can significantly enhance acoustic focal gain and penetration from inherently smaller diameter catheter-based applicators.

摘要

目的

基于导管的超声治疗器可实现临近体腔通道组织的热消融,但其聚焦和穿透能力有限,这是因为治疗器需要通过集成的小尺寸换能器穿过解剖通道。本研究设计了一种可扩展的腔内或腹腔镜超声治疗器,配有可展开的声反射器和液体透镜组件,在设备输送后可扩展,以增加有效声孔径,并允许更深和动态可调的目标深度。本文进行了声学和生物热理论研究以及台式验证概念测量,以研究该设计。

方法

该设计方案由位于导管组件末端的管状换能器阵列组成,周围是一个可膨胀的充水圆锥形气球,其内部有一个二次反射腔,可将声能通过平面凸透镜液体透镜重新引导至远端。通过控制透镜的液体体积,可以改变凸面来调整焦距,或在设备插入或移除时将其折叠。使用矩形辐射器方法和二次声源对扩展治疗器组件的声输出进行建模,同时考虑了界面处的反射和折射。对换能器半径(1-5 毫米)、高度(3-25 毫米)、频率(1.5-3 兆赫兹)、膨胀气球直径(10-50 毫米)、透镜焦距(10-100 毫米)、透镜液体(硅油、全氟碳化物)和组织衰减(0-10 纳帕/米/兆赫兹)对波束分布和焦点增益的影响进行了参数研究。制造并使用基于水听器的强度分布测量方法对验证概念治疗器组件进行了特征描述。在 2-10 厘米的目标深度范围内对肝和胰腺组织的腔内消融进行了生物热模拟。

结果

模拟结果表明,焦点增益和穿透深度与扩展反射器-透镜气球直径成正比,使用全氟碳液体透镜可获得更大的性能。在水介质中,对 50 毫米气球外径、10 毫米换能器外径(OD)、1.5 兆赫兹组件进行模拟,结果表明在 5 厘米的焦点深度处获得了约 170 的最大强度增益(焦点尺寸:~12 毫米长×1.4 毫米宽),在 24 至 84 毫米的深度范围内焦点增益大于 100。较小的配置(10 毫米气球 OD、4 毫米换能器 OD、1.5 兆赫兹)在 9 毫米深度处产生了 6 的最大增益。与具有 12 毫米直径固定球形聚焦换能器的常规治疗器相比,对于气球直径≥20 毫米的组件配置,在超过 20 毫米的深度处焦点增益得到增强。实验组件(31 毫米反射/透镜直径、4.75 毫米换能器半径、1.7 兆赫兹)的水听器特征描述表明,在 10-70 毫米的可变深度处可实现聚焦,最大增益约为 60,并与理论模拟结果一致。生物热模拟(30 秒超声、最高 75°C)表明,在所研究的治疗器组件配置中,在 30 毫米和 50 毫米气球直径下,在目标深度从 2 厘米增加到 10 厘米时,可以在肝脏组织中创建尺寸不断增加的局部椭圆形热损伤,从 10 毫米长×3-6 毫米宽增加到 55 毫米长×3-6 毫米宽。

结论

初步的理论和实验分析表明,将腔内超声与可扩展的声学反射器和液体透镜组件相结合,可以显著增强固有小直径导管式治疗器的声聚焦增益和穿透能力。

相似文献

3
Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia.
Int J Hyperthermia. 2021 Aug 10;38(1):1188-1204. doi: 10.1080/02656736.2021.1936216.
7
Dual-sectored transurethral ultrasound for thermal treatment of stress urinary incontinence: in silico studies in 3D anatomical models.
Med Biol Eng Comput. 2020 Jun;58(6):1325-1340. doi: 10.1007/s11517-020-02152-6. Epub 2020 Apr 10.
8
9
Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling.
Int J Hyperthermia. 2016;32(2):97-111. doi: 10.3109/02656736.2015.1119892. Epub 2016 Jan 21.

引用本文的文献

2
Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia.
Int J Hyperthermia. 2021 Aug 10;38(1):1188-1204. doi: 10.1080/02656736.2021.1936216.
4
Therapeutic Systems and Technologies: State-of-the-Art Applications, Opportunities, and Challenges.
IEEE Rev Biomed Eng. 2020;13:325-339. doi: 10.1109/RBME.2019.2908940. Epub 2019 Apr 2.

本文引用的文献

2
Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling.
Int J Hyperthermia. 2016;32(2):97-111. doi: 10.3109/02656736.2015.1119892. Epub 2016 Jan 21.
3
A light-reflecting balloon catheter for atraumatic tissue defect repair.
Sci Transl Med. 2015 Sep 23;7(306):306ra149. doi: 10.1126/scitranslmed.aaa2406.
4
Catheter-based ultrasound technology for image-guided thermal therapy: current technology and applications.
Int J Hyperthermia. 2015 Mar;31(2):203-15. doi: 10.3109/02656736.2015.1006269. Epub 2015 Mar 23.
5
Endoscopic high-intensity focused US: technical aspects and studies in an in vivo porcine model (with video).
Gastrointest Endosc. 2015 May;81(5):1243-50. doi: 10.1016/j.gie.2014.12.019. Epub 2015 Mar 7.
6
Applicators for magnetic resonance-guided ultrasonic ablation of benign prostatic hyperplasia.
Invest Radiol. 2013 Jun;48(6):387-94. doi: 10.1097/RLI.0b013e31827fe91e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验