Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
J Magn Reson Imaging. 2018 Mar;47(3):647-655. doi: 10.1002/jmri.25807. Epub 2017 Jul 6.
To validate a multiparametric automated algorithm-ENhancement of Automated Blood fLow Estimates (ENABLE)-that identifies useful and poor arterial spin-labeled (ASL) difference images in multiple postlabeling delay (PLD) acquisitions and thereby improve clinical ASL.
ENABLE is a sort/check algorithm that uses a linear combination of ASL quality features. ENABLE uses simulations to determine quality weighting factors based on an unconstrained nonlinear optimization. We acquired a set of 6-PLD ASL images with 1.5T or 3.0T systems among 98 healthy elderly and adults with mild cognitive impairment or dementia. We contrasted signal-to-noise ratio (SNR) of cerebral blood flow (CBF) images obtained with ENABLE vs. conventional ASL analysis. In a subgroup, we validated our CBF estimates with single-photon emission computed tomography (SPECT) CBF images.
ENABLE produced significantly increased SNR compared to a conventional ASL analysis (Wilcoxon signed-rank test, P < 0.0001). We also found the similarity between ASL and SPECT was greater when using ENABLE vs. conventional ASL analysis (n = 51, Wilcoxon signed-rank test, P < 0.0001) and this similarity was strongly related to ASL SNR (t = 24, P < 0.0001).
These findings suggest that ENABLE improves CBF image quality from multiple PLD ASL in dementia cohorts at either 1.5T or 3.0T, achieved by multiparametric quality features that guided postprocessing of dementia ASL.
2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:647-655.
验证一种多参数自动化算法——增强自动血流估计(ENABLE),该算法可识别多个标记后延迟(PLD)采集的有用和不良动脉自旋标记(ASL)差异图像,从而改善临床 ASL。
ENABLE 是一种排序/检查算法,使用 ASL 质量特征的线性组合。ENABLE 使用模拟根据无约束非线性优化来确定质量加权因子。我们在 98 名健康老年人和轻度认知障碍或痴呆患者中使用 1.5T 或 3.0T 系统采集了一组 6-PLD ASL 图像。我们对比了使用 ENABLE 与传统 ASL 分析获得的脑血流(CBF)图像的信噪比(SNR)。在一个亚组中,我们使用单光子发射计算机断层扫描(SPECT)CBF 图像验证了我们的 CBF 估计值。
与传统 ASL 分析相比,ENABLE 产生的 SNR 显著增加(Wilcoxon 符号秩检验,P < 0.0001)。我们还发现,与传统 ASL 分析相比,当使用 ENABLE 时,ASL 与 SPECT 之间的相似性更高(n = 51,Wilcoxon 符号秩检验,P < 0.0001),这种相似性与 ASL SNR 密切相关(t = 24,P < 0.0001)。
这些发现表明,ENABLE 通过指导痴呆 ASL 后处理的多参数质量特征,可改善 1.5T 或 3.0T 痴呆队列中来自多个 PLD ASL 的 CBF 图像质量。
2 技术功效:阶段 2 J. Magn. Reson. Imaging 2018;47:647-655.