Suppr超能文献

无研究特定方差信息的荟萃分析:异质性情况。

Meta-analysis without study-specific variance information: Heterogeneity case.

机构信息

1 Department of Mathematics and Statistics, Thammasat University, Thailand.

2 Mathematical Sciences and Southampton Statistical Sciences Research Institute, University of Southampton, UK.

出版信息

Stat Methods Med Res. 2019 Jan;28(1):196-210. doi: 10.1177/0962280217718867. Epub 2017 Jul 6.

Abstract

The random effects model in meta-analysis is a standard statistical tool often used to analyze the effect sizes of the quantity of interest if there is heterogeneity between studies. In the special case considered here, meta-analytic data contain only the sample means in two treatment arms and the sample sizes, but no sample standard deviation. The statistical comparison between two arms for this case is not possible within the existing meta-analytic inference framework. Therefore, the main objective of this paper is to estimate the overall mean difference and associated variances, the between-study variance and the within-study variance, as specified as the important elements in the random effects model. These estimators are obtained using maximum likelihood estimation. The standard errors of the estimators and a quantification of the degree of heterogeneity are also investigated. A measure of heterogeneity is suggested which adjusts the original suggested measure of Higgins' I for within study sample size. The performance of the proposed estimators is evaluated using simulations. It can be concluded that all estimated means converged to their associated true parameter values, and its standard errors tended to be small if the number of the studies involved in the meta-analysis was large. The proposed estimators could be favorably applied in a meta-analysis on comparing two surgeries for asymptomatic congenital lung malformations in young children.

摘要

元分析中的随机效应模型是一种标准的统计工具,如果研究之间存在异质性,通常用于分析感兴趣数量的效应大小。在本文考虑的特殊情况下,元分析数据仅包含两个治疗组的样本均值和样本量,但没有样本标准差。对于这种情况,在现有的元分析推断框架内不可能进行两个臂之间的统计比较。因此,本文的主要目的是估计总体均值差异和相关方差、研究间方差和研究内方差,这些都是随机效应模型中指定的重要元素。这些估计量是通过最大似然估计得到的。还研究了估计量的标准误差和异质性程度的量化。建议了一种衡量异质性的方法,该方法针对研究内样本量调整了 Higgins' I 的原始建议度量。通过模拟评估了所提出的估计量的性能。可以得出结论,如果元分析中涉及的研究数量较大,则所有估计的均值都收敛到它们的相关真实参数值,并且其标准误差往往较小。所提出的估计量可以在比较幼儿无症状先天性肺畸形的两种手术的元分析中得到有利的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验