Suppr超能文献

自适应 critic 非线性鲁棒控制:综述。

Adaptive Critic Nonlinear Robust Control: A Survey.

出版信息

IEEE Trans Cybern. 2017 Oct;47(10):3429-3451. doi: 10.1109/TCYB.2017.2712188. Epub 2017 Jul 3.

Abstract

Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.

摘要

自适应动态规划 (ADP) 和强化学习在进行智能优化时彼此非常相关。它们都被认为是很有前途的方法,涉及信息技术的重要组成部分,如人工智能、大数据和深度学习。虽然在解决非线性最优控制问题方面已经取得了很大的进展和调查,但在不确定环境下基于 ADP 的控制策略的鲁棒性研究尚未得到充分总结。因此,本调查综述了连续时间非线性系统基于自适应评论家的鲁棒控制设计的最新主要结果。回顾了基于 ADP 的非线性最优调节,接着是具有匹配不确定性的非线性系统的鲁棒稳定、不匹配植物的保证成本控制设计以及互联系统的分散稳定。此外,还进行了进一步的综合讨论,包括基于事件的鲁棒控制设计、评论家学习规则的改进、非线性 H 控制设计以及对未来展望的几点说明。通过将基于 ADP 的最优和鲁棒控制方法应用于实际电力系统和架空起重机装置,提供了两个典型示例来验证理论结果的有效性。总的来说,本调查有助于促进具有鲁棒性保证的自适应评论家控制方法的发展和更高层次智能系统的构建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验