Duan Mei, Zhang Rongxue, Zhu Fugui, Zhang Zhenqian, Gou Lanming, Wen Jiangqi, Dong Jiangli, Wang Tao
State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
Crop Research Institute of Tianjin Academy of Agricultural Sciences, Tianjin 300384, China.
Plant Cell. 2017 Jul;29(7):1748-1772. doi: 10.1105/tpc.17.00044. Epub 2017 Jul 6.
The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play a vital role in the response to drought stress. Here, we report a lipid-anchored NACsa TF in MfNACsa is an essential regulator of plant tolerance to drought stress, resulting in the differential expression of genes involved in oxidation reduction and lipid transport and localization. MfNACsa is associated with membranes under unstressed conditions and, more specifically, is targeted to the plasma membrane through -palmitoylation. However, a Cys-to-Ser mutation or inhibition of -palmitoylation results in MfNACsa retention in the endoplasmic reticulum/Golgi. Under drought stress, MfNACsa translocates to the nucleus through de--palmitoylation mediated by the thioesterase MtAPT1, as coexpression of APT1 results in the nuclear translocation of MfNACsa, whereas mutation of the catalytic site of APT1 results in colocalization with MfNACsa and membrane retention of MfNACsa. Specifically, the nuclear MfNACsa binds the glyoxalase I () promoter under drought stress, resulting in drought tolerance by maintaining the glutathione pool in a reduced state, and the process is dependent on the APT1-NACsa regulatory module. Our findings reveal a novel mechanism for the nuclear translocation of an -palmitoylated NAC in response to stress.
植物特有的NAC(NAM、ATAF1/2和CUC2)转录因子在干旱胁迫响应中起着至关重要的作用。在此,我们报道了一种脂质锚定的NAC转录因子MfNACsa。MfNACsa是植物耐旱性的关键调节因子,导致参与氧化还原以及脂质转运和定位的基因差异表达。在非胁迫条件下,MfNACsa与膜相关,更具体地说,通过棕榈酰化靶向质膜。然而,半胱氨酸到丝氨酸的突变或棕榈酰化的抑制会导致MfNACsa滞留在内质网/高尔基体中。在干旱胁迫下,MfNACsa通过硫酯酶MtAPT1介导的去棕榈酰化作用转运到细胞核,因为APT1的共表达会导致MfNACsa的核转运,而APT1催化位点的突变会导致与MfNACsa共定位以及MfNACsa的膜保留。具体而言,核内的MfNACsa在干旱胁迫下结合乙二醛酶I()启动子,通过将谷胱甘肽池维持在还原状态来实现耐旱性,并且该过程依赖于APT1-NACsa调节模块。我们的研究结果揭示了一种响应胁迫时棕榈酰化NAC核转运的新机制。