Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University , Beijing, 100083, China.
Biomacromolecules. 2017 Aug 14;18(8):2623-2632. doi: 10.1021/acs.biomac.7b00730. Epub 2017 Jul 18.
Engineering reversible cross-links between nanoparticles and polymer matrix is a promising avenue to reinforce the mechanical properties of elastomers and in particular soft hydrogels. In this work, we study a model system of composite hydrogel reinforced with cellulose nanofibrils (CNFs), where the integration of reversible hydrogen bonds into a lightly covalently cross-linked polyacrylamide (PAAm) matrix. This approach yields the dual cross-linked networks with synergistically improved strength, modulus, and toughness. The reversible nature of the hydrogen-bonded cross-links manifests a strong strain rate (έ) dependent dynamics properties. The CNF-PAAm interaction among physically adsorbed chains on the surface of CNF is examined as a function of CNF fraction by sum frequency generation spectroscopy. The results indicate a decrease of the number of free -OH groups on the CNF surface. Moreover, the deformation-resting experiments show a unique interface stiffening mechanism where the polymer chains desorbed from the CNF surface under oscillatory shear become entangled during resting time. The bending micromechanics test reveals that the CNF interfacial slip imparts the capability to strengthen the composites during deformation. The fibril pull-out process activates a series of dissipation mechanisms that increase the crack propagation resistance. These findings advance our understanding the role of interfacial layer in microscopic reinforcement mechanism and provide a constitutive foundation for exploring the deformation behaviors of the cellulosic hydrogels.
工程可逆交联纳米粒子和聚合物基体之间是一种很有前途的途径,以加强弹性体的机械性能,特别是软质水凝胶。在这项工作中,我们研究了纤维素纳米纤维(CNF)增强复合水凝胶的模型体系,其中将氢键整合到轻度共价交联的聚丙烯酰胺(PAAm)基质中。这种方法得到了具有协同增强强度、模量和韧性的双重交联网络。氢键交联的可逆性质表现出强烈的应变率(έ)相关动力学特性。通过和频产生光谱研究了物理吸附在 CNF 表面上的链之间的 CNF-PAAm 相互作用与 CNF 分数的关系。结果表明 CNF 表面上的游离-OH 基团数量减少。此外,变形休息实验表明存在一种独特的界面增强机制,即在振荡剪切下从 CNF 表面解吸的聚合物链在休息时间内缠结。弯曲微力学测试表明,CNF 界面滑动赋予了复合材料在变形过程中增强的能力。纤维拔出过程激活了一系列增加裂纹扩展阻力的耗散机制。这些发现提高了我们对界面层在微观增强机制中的作用的理解,并为探索纤维素水凝胶的变形行为提供了本构基础。