Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA.
Chemistry Department, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA.
Biochim Biophys Acta Proteins Proteom. 2017 Oct;1865(10):1246-1254. doi: 10.1016/j.bbapap.2017.07.001. Epub 2017 Jul 4.
In blood coagulation, thrombin converts fibrinogen into fibrin monomers that polymerize into a clot network. Thrombin also activates Factor XIII by cleaving the R37-G38 peptide bond of the Activation Peptide (AP) segment. The resultant transglutaminase introduces covalent crosslinks into the fibrin clot. A strategy to modify clot architecture would be to design FXIII AP sequences that are easier or more difficult to be thrombin-cleaved thus controlling initiation of crosslinking. To aid in this design process, FXIII V34X (28-41) Activation Peptides were kinetically ranked for cleavage by wild-type thrombin and several anticoagulant mutants. Thrombin-catalyzed hydrolysis of aromatic FXIII F34, W34, and Y34 APs was compared with V34 and L34. Cardioprotective FXIII L34 remained the variant most readily cleaved by wild-type thrombin. The potent anticoagulant thrombins W215A and W215A/E217A (missing a key substrate platform for binding fibrinogen) were best able to hydrolyze FXIII F34 and W34 APs. Thrombin I174A and L99A could effectively accommodate FXIII W34 and Y34 APs yielding kinetic parameters comparable to FXIII AP L34 with wild-type thrombin. None of the aromatic FXIII V34X APs could be hydrolyzed by thrombin Y60aA. FXIII F34 and W34 are promising candidates for FXIII - anticoagulant thrombin systems that could permit FXIII-catalyzed crosslinking in the presence of reduced fibrin formation. By contrast, FXIII Y34 with thrombin (Y60aA or W215A/E217A) could help assure that both fibrin clot formation and protein crosslinking are hindered. Regulating the activation of FXIII is predicted to be a strategy for helping to control fibrin clot architecture and its neighboring environments.
在血液凝固中,凝血酶将纤维蛋白原转化为纤维蛋白单体,这些单体聚合形成血栓网络。凝血酶还通过裂解活化肽(AP)片段的 R37-G38 肽键激活因子 XIII。由此产生的转谷氨酰胺酶将共价交联引入纤维蛋白凝块中。修饰血栓结构的策略是设计更容易或更难被凝血酶裂解的 FXIII AP 序列,从而控制交联的起始。为了辅助这一设计过程,对野生型凝血酶和几种抗凝突变体切割 FXIII V34X(28-41)活化肽的动力学进行了分级。比较了凝血酶催化 FXIII F34、W34 和 Y34 AP 的水解与 V34 和 L34 的水解。与野生型凝血酶相比,保护性 FXIII L34 仍然是最容易被裂解的变体。强力抗凝凝血酶 W215A 和 W215A/E217A(缺少一个结合纤维蛋白原的关键底物平台)最能水解 FXIII F34 和 W34 AP。凝血酶 I174A 和 L99A 能够有效地适应 FXIII W34 和 Y34 AP,产生的动力学参数与野生型凝血酶的 FXIII AP L34 相当。没有一种芳香族 FXIII V34X AP 可以被凝血酶 Y60aA 水解。FXIII F34 和 W34 是 FXIII-抗凝凝血酶系统的有前途的候选物,该系统可以在减少纤维蛋白形成的情况下允许 FXIII 催化交联。相比之下,与凝血酶(Y60aA 或 W215A/E217A)结合的 FXIII Y34 可以帮助确保纤维蛋白凝块形成和蛋白质交联都受到阻碍。预计调节 FXIII 的激活将是一种帮助控制纤维蛋白凝块结构及其相邻环境的策略。