Suppr超能文献

中国黄土高原废弃农田自然植被恢复过程中土壤氮的长期净转化和定量分子机制。

Long-term net transformation and quantitative molecular mechanisms of soil nitrogen during natural vegetation recovery of abandoned farmland on the Loess Plateau of China.

机构信息

State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China.

State Key Laboratory of Soil Erosion and Dry Land Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling 712100, Shaanxi, China.

出版信息

Sci Total Environ. 2017 Dec 31;607-608:152-159. doi: 10.1016/j.scitotenv.2017.07.014. Epub 2017 Jul 27.

Abstract

The availability of nitrogen (N) can alter vegetation species composition and diversity in degraded ecosystems. A comprehensive understanding of the dynamic fate of ammonium (NH-N) and nitrate (NO-N) processing and the underlying mechanisms are still lacking, particularly in arid to semi-arid degraded ecosystems. We compared and quantified the changes in the rates of net ammonification (R), nitrification (R) and total mineralization (R) and the abundance of bacteria, archaea, and microbial genes related to N transformation on the northern Loess Plateau of China across a 40-year chronosequence of farmland undergoing spontaneous restoration. We found that R, R, and R decreased in grassland soils (0-30-y sites) of different ages and exhibited significant increases at the 40-y sites. The capabilities of the soil to deliver NH-N and NO-N were not a limiting factor during the growing season after 40years of vegetation recovery. Soil mineral nitrogen may be not suitable for predicting and assessing the long-term (approximately 40years) restoration success and progress. The abundance of functional N genes showed differences in sensitivity to natural vegetation recovery of abandoned farmland, which likely reflects the fact that the multi-pathways driven by N functional microbial communities had a large influence on the dynamic fate of NH-N and NO-N. Quantitative response relationships between net N transformation rates and microbial genes related to N transformation were established, and these relationships confirmed that different N transformation processes were strongly linked with certain N functional genes, and collaboratively contributed to N transformation as vegetation recovery progressed. Specifically, R was controlled by AOA-amoA, AOB-amoA, and nxrA; R was governed by napA, narG, nirK, nirS, and nosZ; and R was controlled by nifH, apr, AOA-amoA, AOB-amoA, nirS, and nirK.

摘要

氮 (N) 的供应会改变退化生态系统中植被的物种组成和多样性。对铵 (NH-N) 和硝酸盐 (NO-N) 处理的动态命运及其潜在机制的全面理解仍然缺乏,特别是在干旱到半干旱的退化生态系统中。我们比较和量化了在中国北方黄土高原 40 年农田自然恢复过程中,净氨化(R)、硝化(R)和总矿化(R)速率以及与氮转化相关的细菌、古菌和微生物基因丰度的变化。我们发现,不同年龄草地土壤(0-30 年)的 R、R 和 R 随着植被恢复的进行而减少,并在 40 年的地点显著增加。在植被恢复 40 年后的生长季节,土壤提供 NH-N 和 NO-N 的能力不是限制因素。土壤矿质氮可能不适合预测和评估长期(约 40 年)恢复的成功和进展。功能 N 基因的丰度对废弃农田自然植被恢复的敏感性存在差异,这可能反映了氮功能微生物群落驱动的多途径对 NH-N 和 NO-N 动态命运的巨大影响。建立了净氮转化速率与氮转化相关的微生物基因之间的定量响应关系,这些关系证实了不同的氮转化过程与某些氮功能基因密切相关,并随着植被恢复的进行而协同促进氮转化。具体而言,R 由 AOA-amoA、AOB-amoA 和 nxrA 控制;R 由 napA、narG、nirK、nirS 和 nosZ 控制;R 由 nifH、apr、AOA-amoA、AOB-amoA、nirS 和 nirK 控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验