Suppr超能文献

一种用于分析多药理学和多特异性数据的简单数学方法。

A simple mathematical approach to the analysis of polypharmacology and polyspecificity data.

作者信息

Maggiora Gerry, Gokhale Vijay

机构信息

BIO5 Institute, University of Arizona, 1657 East Helen Street, Tucson, AZ, 85719, USA.

出版信息

F1000Res. 2017 Jun 6;6. doi: 10.12688/f1000research.11517.1. eCollection 2017.

Abstract

There many possible types of drug-target interactions, because there are a surprising number of ways in which drugs and their targets can associate with one another.  These relationships are expressed as polypharmacology and polyspecificity.  Polypharmacology is the capability of a given drug to exhibit activity with respect to multiple drug targets, which are not necessarily in the same activity class. Adverse drug reactions ('side effects') are its principal manifestation, but polypharmacology is also playing a role in the repositioning of existing drugs for new therapeutic indications.  Polyspecificity, on the other hand, is the capability of a given target to exhibit activity with respect to multiple, structurally dissimilar drugs.  That these concepts are closely related to one another is, surprisingly, not well known.  It will be shown in this work that they are, in fact, mathematically related to one another and are in essence 'two sides of the same coin'.  Hence, information on polypharmacology provides equivalent information on polyspecificity, and . Networks are playing an increasingly important role in biological research. Drug-target networks, in particular, are made up of drug nodes that are linked to specific target nodes if a given drug is active with respect to that target.  Such networks provide a graphic depiction of polypharmacology and polyspecificity.  However, by their very nature they can obscure information that may be useful in their interpretation and analysis.  This work will show how such latent information can be used to determine bounds for the degrees of polypharmacology and polyspecificity, and how to estimate other useful features associated with the lack of completeness of most drug-target datasets.

摘要

药物 - 靶点相互作用有多种可能类型,因为药物及其靶点相互关联的方式多得惊人。这些关系表现为多药理学和多特异性。多药理学是指一种给定药物针对多个药物靶点表现出活性的能力,这些靶点不一定属于同一活性类别。药物不良反应(“副作用”)是其主要表现形式,但多药理学在现有药物重新定位用于新治疗适应症方面也发挥着作用。另一方面,多特异性是指一个给定靶点针对多种结构不同的药物表现出活性的能力。令人惊讶的是,这些概念彼此密切相关这一点并不广为人知。在这项工作中将表明,它们实际上在数学上相互关联,本质上是“同一枚硬币的两面”。因此,关于多药理学的信息提供了关于多特异性的等效信息,并且……网络在生物学研究中发挥着越来越重要的作用。特别是药物 - 靶点网络,由药物节点组成,如果一种给定药物对某个靶点有活性,这些药物节点就与特定的靶点节点相连。这样的网络提供了多药理学和多特异性的图形描述。然而,就其本质而言,它们可能会掩盖在其解释和分析中可能有用的信息。这项工作将展示如何利用这些潜在信息来确定多药理学和多特异性程度的界限,以及如何估计与大多数药物 - 靶点数据集不完整性相关的其他有用特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验