Harb J, Meflah K, di Pietro A, Bernard S, Gautheron D C
Biochim Biophys Acta. 1986 Mar 28;870(2):320-6. doi: 10.1016/0167-4838(86)90236-0.
An investigation, using specific chemical reagents, of the amino acids involved in the catalytic activity of the purified 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) from bovine liver plasma membranes, was carried out. The enzyme was irreversibly inactivated by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The inhibition kinetics were of the first-order type and decreased partially in the presence of nucleotides and divalent cations. These results indicate for the first time that a carboxyl group is essential for the catalytic process of 5'-nucleotidase. Moreover, chemical modification by diethylpyrocarbonate also produced inactivation of the enzyme and showed a differential spectrum with a peak at 240 nm characteristic of N-carbethoxyhistidine residues. This inactivation was efficiently released upon decarbethoxylation by hydroxylamine only when the extent of inactivation, due to low concentration of diethylpyrocarbonate, was limited. The time-dependent inactivation followed first-order kinetics and nucleotides afforded significant protection against diethylpyrocarbonate modification. The results indicate the involvement of the histidine residue in catalysis.