Suppr超能文献

采用氯化铁作为主要催化剂的先进氧化还原流燃料电池,可将碳水化合物完全转化为电能。

Advanced redox flow fuel cell using ferric chloride as main catalyst for complete conversion from carbohydrates to electricity.

机构信息

Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.

出版信息

Sci Rep. 2017 Jul 11;7(1):5142. doi: 10.1038/s41598-017-05535-2.

Abstract

Liquid catalyzed fuel cell (LCFC) is a kind of redox flow fuel cell directly converting carbohydrates to electricity. To improve its efficiency, ferric chloride (FeCl) was introduced as main catalyst. As mono catalyst, phosphomolybdic acid (PMo) was much better than phosphotungstic acid (PW) and FeCl was intermediate between them. Compared with PMo at the optimal dose of 0.30 mol/L, the combination of FeCl (1.00 mol/L) and PW (0.06 mol/L) achieved similar power output from glucose (2.59 mW/cm) or starch (1.57 mW/cm), and even improved the maximum power density by 57% from 0.46 to 0.72 mW/cm when using cellulose as the fuel. Long-term continuous operation of the LCFC indicated that carbohydrates can be hydrolyzed to glucose and then oxidized stepwise to carbon dioxide. At the latter stage, there was a linear relationship between the electron transfer number from glucose to catalyst and the subsequent cell performance. Based on these findings, the contribution of FeCl to LCFC should be derived from the accelerated hydrolysis and oxidation of carbohydrates and the enhanced electron transfer from glucose to anode. The addition of FeCl reduced the usage of polyoxometalates by 80%, and the replacement implied that LCFC can be operated less toxically and more economically.

摘要

液态催化燃料电池 (LCFC) 是一种直接将碳水化合物转化为电能的氧化还原流燃料电池。为了提高其效率,引入了三氯化铁 (FeCl) 作为主要催化剂。作为单催化剂,磷钼酸 (PMo) 优于磷钨酸 (PW),而 FeCl 则介于两者之间。与最佳剂量为 0.30 mol/L 的 PMo 相比,FeCl (1.00 mol/L) 和 PW (0.06 mol/L) 的组合从葡萄糖 (2.59 mW/cm) 或淀粉 (1.57 mW/cm) 中获得了相似的功率输出,甚至通过使用纤维素作为燃料,将最大功率密度从 0.46 提高到 0.72 mW/cm,提高了 57%。LCFC 的长期连续运行表明,碳水化合物可以水解成葡萄糖,然后逐步氧化成二氧化碳。在后一阶段,从葡萄糖到催化剂的电子转移数与随后的电池性能之间存在线性关系。基于这些发现,FeCl 对 LCFC 的贡献应源于碳水化合物的加速水解和氧化以及葡萄糖向阳极的电子转移增强。FeCl 的添加将多金属氧酸盐的用量减少了 80%,这种替代意味着 LCFC 可以以更低的毒性和更高的经济性运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d440/5505984/03fc2c8c9c49/41598_2017_5535_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验