Max-Planck-Institut für Quantenoptik, Hans-Kopfermann Strasse 1, 85748, Garching, Germany.
Ludwig-Maximilian-Universität München, Am Couloumbwall 1, 85748, Garching, Germany.
Sci Rep. 2017 Jul 12;7(1):5224. doi: 10.1038/s41598-017-05082-w.
The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 10 W/cm with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.
物质中电子动力学的观测和操控需要阿秒光脉冲,这些光脉冲通常可由飞秒激光驱动的高次谐波产生。然而,这些激光的能量限制仅支持较弱的光源,相应地也只能进行线性阿秒研究。在这里,我们报告了一种专为非线性阿秒光学和相对论激光等离子体物理设计的光参量合成器。该合成器独特地将约 10 W/cm 的超相对论聚焦强度与亚两个载波周期的脉冲持续时间相结合。两个依次放大且互补的光谱范围的相干组合产生了具有多太瓦峰值功率的亚 5fs 脉冲。该光源的应用允许在气体中产生宽的 100eV 光子能量连续谱,以及相对论等离子体中的高次谐波。光的前所未有的时空限制现在允许在相对论条件下研究电场驱动的电子现象,并最终产生下一代强的孤立阿秒光源。