Suppr超能文献

评估嗜酸硫氧化菌氧化毒砂过程中生物膜的变化和浓度-深度分布。

Assessment of biofilm changes and concentration-depth profiles during arsenopyrite oxidation by Acidithiobacillus thiooxidans.

机构信息

Programa de Doctorado Interinstitucional en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Durango S/N, Col. Valle del Sur, 34120, Durango, DGO, Mexico.

Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120, Durango, DGO, Mexico.

出版信息

Environ Sci Pollut Res Int. 2017 Aug;24(24):20082-20092. doi: 10.1007/s11356-017-9619-8. Epub 2017 Jul 12.

Abstract

Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS)-like, S /S, and AsS compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.

摘要

生物膜的形成和演替是理解砷黄铁矿生物氧化动力学的关键因素。为了评估嗜酸硫氧化菌(Acidithiobacillus thiooxidans)生物膜结构在 120 小时生物氧化过程中形成的中间次生化合物和任何显著变化,使用拉曼光谱、扫描电子显微镜(SEM)、共聚焦激光扫描显微镜(CLSM)、辉光放电光谱(GDS)和蛋白质分析(即定量)进行了化学和表面分析。结果表明,生物膜首先从低细胞密度结构(1 至 12 小时)演变为微菌落形成(24 至 120 小时),然后最终被包括黄铁矿(FeS)样、S/S 和 AsS 化合物在内的次生化合物基质封闭,如拉曼和 SEM-EDS 所示。GDS 分析(12 小时的浓度-深度剖面)表明,生物氧化和非生物对照表面之间的深度形态存在显著差异,从而对样品表面-体相变化(即反应性和/或结构-活性关系)进行了定量评估。分别通过定量蛋白质分析和 CLSM 分析表明,由于砷黄铁矿和细胞在 120 小时生物氧化过程中的相互作用,细胞外蛋白质表达的类型和生物膜结构发生了变化,从亲水(即胞外多糖)到疏水(即脂质)。我们根据这项研究的结果,提出了砷黄铁矿生物氧化的可行的环境和工业意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验