Chemistry Research Laboratory, Department of Chemistry, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K.
Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier , cc 1501, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France.
J Am Chem Soc. 2017 Aug 16;139(32):11165-11183. doi: 10.1021/jacs.7b05405. Epub 2017 Aug 2.
We report a combined synthetic, mechanistic, and theoretical study of the first borylimido complex of a rare earth metal, (NacNac)Sc{NB(NAr'CH)} (25, Ar' = 2,6-CHPr, NacNac = Ar'NC(Me)CHC(Me)NCHCHNMe). Thermolysis of the methyl-borylamide (NacNac)Sc(Me){NHB(NAr'CH)} (18) generated transient imide 25 via rate-determining, first-order methane elimination (KIE ≈ 8.7). In the absence of external substrate, 25 underwent a reversible cyclometalation reaction (sp C-H bond addition to Sc═N) with a methyl group of the NacNac ligand forming {MeC(NCHPrCH(Me)CH)CHC(Me)NCHCHNMe}Sc{NHB(NAr'CH)} (21). In the presence of pyridine or DMAP, reversible sp C-H bond activation occurred, forming orthometalated complexes (NacNac)Sc{NHB(NAr'CH)}(η-4-NCHR) (R = H or NMe). In situ reaction of 25 with HCCTol gives irreversible sp C-H bond activation under kinetic control, and with MeCCPh [2+2] cycloaddition to Sc═N takes place. These reactions represent the first substrate activation processes for any metal-bound borylimide. The bonding in 25 and the mechanism and thermodynamics of the reactions have been studied using density functional theory (DFT), supported by quantum theory of atoms in molecules and natural bond orbital analysis. Although the borylimido and arylimido dianions studied here are formally isoelectronic and possess comparable frontier molecular orbitals, the borylimido ligand is both a better π-donor and σ-donor, forming stronger and shorter metal-nitrogen bonds with somewhat reduced ionicity. Despite this, reactions of these types of borylimides with C-H or C≡C bonds are all more exothermic and more strongly activating than for the corresponding arylimides. DFT calculations on model systems of differing steric bulk unpicked the underlying thermodynamic factors controlling the reactions of 25 and its reaction partners, and a detailed comparison was made with the previously described arylimido homologues.
我们报告了首例稀土金属硼酰亚胺配合物的综合、机理和理论研究,(NacNac)Sc{NB(NAr'CH)}(25,Ar'=2,6-CHPr,NacNac=Ar'NC(Me)CHC(Me)NCHCHNMe)。甲基硼酰胺(NacNac)Sc(Me){NHB(NAr'CH)}(18)的热解通过一级甲烷消除(KIE≈8.7)生成瞬态酰亚胺 25。在没有外部底物的情况下,25 与 NacNac 配体的一个甲基发生可逆的环金属化反应(sp C-H 键加成到 Sc═N),形成{MeC(NCHPrCH(Me)CH)CHC(Me)NCHCHNMe}Sc{NHB(NAr'CH)}(21)。在吡啶或 DMAP 的存在下,发生可逆的 sp C-H 键活化,形成配位的配合物(NacNac)Sc{NHB(NAr'CH)}(η-4-NCHR)(R=H 或 NMe)。25 与 HCCTol 的原位反应在动力学控制下发生不可逆的 sp C-H 键活化,并且与 MeCCPh [2+2]环加成到 Sc═N 发生。这些反应代表了任何金属结合的硼酰亚胺的第一个底物活化过程。使用密度泛函理论(DFT)研究了 25 的键合以及反应的机理和热力学,得到了原子分子量子理论和自然键轨道分析的支持。尽管研究的硼酰亚胺和芳基酰亚胺二阴离子在形式上是等电子的,并且具有相当的前沿分子轨道,但硼酰亚胺配体既是更好的π供体又是σ供体,与氮形成更强和更短的金属-氮键,离子性略有降低。尽管如此,这些类型的硼酰亚胺与 C-H 或 C≡C 键的反应都是放热的,并且比相应的芳基酰亚胺更具活性。对不同空间位阻模型体系的 DFT 计算挑出了控制 25 及其反应伙伴反应的潜在热力学因素,并与之前描述的芳基酰亚胺进行了详细比较。