Suppr超能文献

通过双自由基环加成/碎片化形成多环芳烃

Polycyclic Aromatic Hydrocarbon Growth by Diradical Cycloaddition/Fragmentation.

作者信息

Comandini A, Abid S, Chaumeix N

机构信息

Institut de Combustion Aérothermique Réactivité et Environnement, INSIS-CNRS , 1C Avenue de la Recherche Scientifique, Orléans 45071 Cedex 2, France.

出版信息

J Phys Chem A. 2017 Aug 10;121(31):5921-5931. doi: 10.1021/acs.jpca.7b05562. Epub 2017 Aug 1.

Abstract

The recent theoretical and experimental investigations on the growth of polycyclic aromatic hydrocarbons in pyrolytic environments highlight the possible role of the 1,4-cycloaddition/fragmentation (1,4-CAF) steps in the formation of PAH intermediates and consequently soot. The present theoretical study explores the possibility to generalize such mechanism to reactions involving various diradical compounds and stable multiring structures. The calculations were performed using the uB3LYP/6-311G(d,p) method and different composite methods, when possible, for more accurate energy estimates. First, the complex potential energy surface for the reactions between o-benzyne and naphthalene was investigated, including the 1,4-CAF mechanism to form anthracene and acetylene through the dibenzobicyclo[2.2.2]octatriene intermediate. Moreover, the products of the addition reactions to the α- and β-carbons and to the ring-junction atoms were determined. The energies for the optimized CAF structures, which constitute the most-favorable pathway from an energetic point of view, were calculated using CBS-QB3, G3(MP2)B3, and G3B3 methods and compared to the corresponding values for the o-benzyne + benzene reactions. Additional calculations were focused on the possible CAF reactions between o-benzyne and larger multiring structures, such as anthracene, phenanthrene, pyrene, and the four-ring PAHs. The results indicate how the energetics of such reactions is influenced by both the size of the PAH compound and the position of the carbon atoms involved. In the second part of the study, the energy barriers necessary to form multiring diradicals from the corresponding radical molecules were analyzed at a G3(MP2)B3 level of theory. Such calculations are preliminary for the subsequent study on the CAF reactions between the different diradical intermediates and benzene. While the size of the diradical does not affect significantly the energy barriers, the position of the diradical site is critical. The concerted Diels-Alder reactions between the naphthynes and naphthalene were also studied in order to further clarify the analogies between the reactions involving different diradicals. Based on these results, kinetic considerations were provided based on the comparison with the simpler o-benzyne + benzene system, although further higher-level calculations and master equation kinetic analyses will be required to derive the general kinetic rules.

摘要

近期关于热解环境中多环芳烃生长的理论和实验研究突出了1,4-环加成/碎片化(1,4-CAF)步骤在多环芳烃中间体形成以及最终烟灰形成过程中可能发挥的作用。本理论研究探讨了将这种机制推广到涉及各种双自由基化合物和稳定多环结构的反应中的可能性。计算采用uB3LYP/6-311G(d,p)方法以及在可能情况下采用不同的复合方法,以获得更准确的能量估计。首先,研究了邻苯炔与萘反应的复杂势能面,包括通过二苯并双环[2.2.2]辛三烯中间体形成蒽和乙炔的1,4-CAF机制。此外,还确定了加成反应在α-和β-碳以及环连接原子上的产物。使用CBS-QB3、G3(MP2)B3和G3B3方法计算了构成能量上最有利途径的优化CAF结构的能量,并与邻苯炔 + 苯反应的相应值进行了比较。额外的计算集中在邻苯炔与更大的多环结构(如蒽、菲、芘和四环多环芳烃)之间可能的CAF反应上。结果表明了此类反应的能量学如何受到多环芳烃化合物大小以及所涉及碳原子位置的影响。在研究的第二部分,在G3(MP2)B3理论水平上分析了从相应自由基分子形成多环双自由基所需的能垒。此类计算是后续关于不同双自由基中间体与苯之间CAF反应研究的初步内容。虽然双自由基的大小对能垒影响不大,但双自由基位点的位置至关重要。还研究了萘炔与萘之间的协同狄尔斯-阿尔德反应,以进一步阐明涉及不同双自由基的反应之间的相似性。基于这些结果,通过与更简单的邻苯炔 + 苯体系进行比较给出了动力学考量,不过需要进一步的更高水平计算和主方程动力学分析来推导一般的动力学规则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验