Suppr超能文献

关于从关联数据得出的社会经济死亡率估计的合理性:一种人口统计学方法。

On the plausibility of socioeconomic mortality estimates derived from linked data: a demographic approach.

作者信息

Lerch Mathias, Spoerri Adrian, Jasilionis Domantas, Viciana Fernandèz Francisco

机构信息

Max Planck Institute for Demographic Research, Rostock, Germany.

Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.

出版信息

Popul Health Metr. 2017 Jul 14;15(1):26. doi: 10.1186/s12963-017-0143-3.

Abstract

BACKGROUND

Reliable estimates of mortality according to socioeconomic status play a crucial role in informing the policy debate about social inequality, social cohesion, and exclusion as well as about the reform of pension systems. Linked mortality data have become a gold standard for monitoring socioeconomic differentials in survival. Several approaches have been proposed to assess the quality of the linkage, in order to avoid the misclassification of deaths according to socioeconomic status. However, the plausibility of mortality estimates has never been scrutinized from a demographic perspective, and the potential problems with the quality of the data on the at-risk populations have been overlooked.

METHODS

Using indirect demographic estimation (i.e., the synthetic extinct generation method), we analyze the plausibility of old-age mortality estimates according to educational attainment in four European data contexts with different quality issues: deterministic and probabilistic linkage of deaths, as well as differences in the methodology of the collection of educational data. We evaluate whether the at-risk population according to educational attainment is misclassified and/or misestimated, correct these biases, and estimate the education-specific linkage rates of deaths.

RESULTS

The results confirm a good linkage of death records within different educational strata, even when probabilistic matching is used. The main biases in mortality estimates concern the classification and estimation of the person-years of exposure according to educational attainment. Changes in the census questions about educational attainment led to inconsistent information over time, which misclassified the at-risk population. Sample censuses also misestimated the at-risk populations according to educational attainment.

CONCLUSION

The synthetic extinct generation method can be recommended for quality assessments of linked data because it is capable not only of quantifying linkage precision, but also of tracking problems in the population data. Rather than focusing only on the quality of the linkage, more attention should be directed towards the quality of the self-reported socioeconomic status at censuses, as well as towards the accurate estimation of the at-risk populations.

摘要

背景

根据社会经济地位得出的可靠死亡率估计,对于有关社会不平等、社会凝聚力与排斥以及养老金制度改革的政策辩论起着至关重要的作用。关联死亡率数据已成为监测生存方面社会经济差异的黄金标准。为避免根据社会经济地位对死亡进行错误分类,已提出了几种评估关联质量的方法。然而,从未从人口统计学角度审视死亡率估计的合理性,且高危人群数据质量的潜在问题也被忽视了。

方法

我们使用间接人口估计法(即合成灭绝世代法),在四个存在不同质量问题的欧洲数据背景下,分析根据教育程度得出的老年死亡率估计的合理性:死亡的确定性和概率性关联,以及教育数据收集方法的差异。我们评估根据教育程度划分的高危人群是否被错误分类和/或错误估计,纠正这些偏差,并估计特定教育程度的死亡关联率。

结果

结果证实,即使使用概率匹配,不同教育阶层内的死亡记录也有良好的关联性。死亡率估计中的主要偏差涉及根据教育程度对暴露人年的分类和估计。人口普查中关于教育程度问题的变化导致信息随时间不一致,从而对高危人群进行了错误分类。样本普查也根据教育程度对高危人群进行了错误估计。

结论

合成灭绝世代法可推荐用于关联数据的质量评估,因为它不仅能够量化关联精度,还能追踪人口数据中的问题。不应仅关注关联质量,而应更多地关注人口普查中自我报告的社会经济地位的质量,以及高危人群的准确估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06d0/5513033/c654a18fcb00/12963_2017_143_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验