State Key Laboratories of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, PR China.
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China.
J Inorg Biochem. 2017 Dec;177:291-299. doi: 10.1016/j.jinorgbio.2017.06.017. Epub 2017 Jul 8.
Vanadium compounds are promising anti-diabetic agents. However, reducing the metal toxicity while keeping/improving the hypoglycemic effect is still a big challenge towards the success of anti-diabetic vanadium drugs. To improve the therapeutic potency using the anti-oxidative strategy, we synthesized new N,N-dimethylphenylenediamine (DMPD)-derivatized nitrilotriacetic acid vanadyl complexes ([VO(dmada)]). The in vitro biological evaluations revealed that the DMPD-derivatized complexes showed improved antioxidant capacity and lowered cytotoxicity on HK-2 cells than bis(maltolato)oxidovanadium (IV) (BMOV). In type II diabetic mice, [VO(p-dmada)] (0.15mmolkg/day) exhibited better hypoglycemic effects than BMOV especially on improving glucose tolerance and alleviating the hyperglycemia-induced liver damage. These insulin enhancement effects were associated with increased expression of peroxisome proliferator-activated receptor α and γ (PPARα/γ) in fat, activation of Akt (v-Akt murine thymoma viral oncogene)/PKB (protein kinase-B) in fat and liver, and inactivation of c-Jun NH-terminal protein kinases (JNK) in liver. Moreover, [VO(p-dmada)] showed no tissue toxicity at the therapeutic dose in diabetic mice and the oral acute toxicity (LD50) was determined to be 1640mgkg. Overall, the experimental results indicated that [VO(p-dmada)] can be a potent insulin enhancement agent with improved efficacy-over- toxicity index for further drug development. In addition, the results on brain Tau phosphorylation suggested necessary investigation on the effects of vanadyl complexes on the pathology of the Alzheimer's disease in the future.
钒化合物是很有前途的抗糖尿病药物。然而,在保持/改善降血糖作用的同时降低金属毒性仍然是抗糖尿病钒药物成功的一个巨大挑战。为了通过抗氧化策略提高治疗效果,我们合成了新的 N,N-二甲基苯二胺(DMPD)衍生的氮三乙酸氧钒([VO(dmada)])配合物。体外生物学评价显示,DMPD 衍生的配合物在 HK-2 细胞上显示出改善的抗氧化能力和降低的细胞毒性,优于双(麦芽酚)氧钒(IV)(BMOV)。在 2 型糖尿病小鼠中,[VO(p-dmada)](0.15mmolkg/天)表现出比 BMOV 更好的降血糖作用,特别是在改善葡萄糖耐量和缓解高血糖引起的肝损伤方面。这些胰岛素增强作用与脂肪中过氧化物酶体增殖物激活受体α和γ(PPARα/γ)的表达增加、脂肪和肝脏中 Akt(v-Akt 鼠胸腺瘤病毒癌基因)/蛋白激酶 B(protein kinase-B)的激活以及肝脏中 c-Jun NH2 末端蛋白激酶(JNK)的失活有关。此外,[VO(p-dmada)]在糖尿病小鼠的治疗剂量下没有显示出组织毒性,口服急性毒性(LD50)确定为 1640mgkg。总的来说,实验结果表明,[VO(p-dmada)]可以作为一种有效的胰岛素增强剂,具有改善的疗效-毒性指数,可进一步开发药物。此外,关于脑 Tau 磷酸化的结果表明,未来有必要研究钒配合物对阿尔茨海默病病理的影响。