Li Li, He Jingya, Wang Linlin, Chen Weihua, Chang Zhongjie
Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China; Department of Biology and CAREG, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China.
Gene Expr Patterns. 2017 Nov;25-26:124-130. doi: 10.1016/j.gep.2017.07.001. Epub 2017 Jul 18.
Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration.
硬骨鱼的鳍在被切断后能够再生出精确位置匹配的结构和功能。然而,我们仍然缺乏系统的转录谱分析和方法来理解鳍再生的分子基础。经过组织学分析,我们建立了一个抑制性消减杂交文库,其中包含418个在尾鳍再生过程中芽基形成和分化阶段差异表达的独特序列。对我们的数据与参考斑马鱼基因组进行基因本体论和差异分布的比较分析,发现了显著的亚类,包括多生物体过程、对刺激的反应、细胞外基质、抗氧化活性和细胞连接功能。KEGG通路分析能够有效识别那些参与组织形态发生和再生的通路中的相关基因,包括紧密连接、细胞粘附分子、mTOR和Jak-STAT信号通路。从相关的功能亚类和信号通路中,挑选了78个克隆进行进一步的Southern杂交。然后,选择了17个基因并使用半定量PCR进行表征。接着鉴定出4个候选基因,包括F11r、Mmp9、Agr2以及一个与任何数据库都不匹配的基因。经过实时定量PCR,结果显示在尾鳍再生的不同时期表达有明显变化。我们可以推测这4个候选基因可能是与鳍再生相关的有价值基因,值得进一步关注。因此,我们的研究展示了如何通过强调生物信息学干预来研究转录谱,以及如何识别与鳍再生过程相关的潜在基因。研究结果也为进一步研究鳍再生的基因和分子机制提供了基础或知识。