Joo Sunjoo, Nishimura Yoshiki, Cronmiller Evan, Hong Ran Ha, Kariyawasam Thamali, Wang Ming Hsiu, Shao Nai Chun, El Akkad Saif-El-Din, Suzuki Takamasa, Higashiyama Tetsuya, Jin Eonseon, Lee Jae-Hyeok
Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada.
Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
Plant Physiol. 2017 Sep;175(1):314-332. doi: 10.1104/pp.17.00731. Epub 2017 Jul 14.
The sexual cycle of the unicellular culminates in the formation of diploid zygotes that differentiate into dormant spores that eventually undergo meiosis. Mating between gametes induces rapid cell wall shedding via the enzyme g-lysin; cell fusion is followed by heterodimerization of sex-specific homeobox transcription factors, GSM1 and GSP1, and initiation of zygote-specific gene expression. To investigate the genetic underpinnings of the zygote developmental pathway, we performed comparative transcriptome analysis of both pre- and post-fertilization samples. We identified 253 transcripts specifically enriched in early zygotes, 82% of which were not up-regulated in null zygotes. We also found that the GSM1/GSP1 heterodimer negatively regulates the vegetative wall program at the posttranscriptional level, enabling prompt transition from vegetative wall to zygotic wall assembly. Annotation of the g-lysin-induced and early zygote genes reveals distinct vegetative and zygotic wall programs, supported by concerted up-regulation of genes encoding cell wall-modifying enzymes and proteins involved in nucleotide-sugar metabolism. The haploid-to-diploid transition in is masterfully controlled by the GSM1/GSP1 heterodimer, translating fertilization and gamete coalescence into a bona fide differentiation program. The fertilization-triggered integration of genes required to make related, but structurally and functionally distinct organelles-the vegetative versus zygote cell wall-presents a likely scenario for the evolution of complex developmental gene regulatory networks.
单细胞生物的有性周期以二倍体合子的形成为顶点,合子分化为休眠孢子,最终进行减数分裂。配子间的交配通过g - 溶素酶诱导细胞壁迅速脱落;细胞融合之后是性别特异性同源异型盒转录因子GSM1和GSP1的异源二聚化,以及合子特异性基因表达的启动。为了研究合子发育途径的遗传基础,我们对受精前后的样本进行了比较转录组分析。我们鉴定出253个在早期合子中特异性富集的转录本,其中82%在无效合子中未上调。我们还发现,GSM1/GSP1异源二聚体在转录后水平负调控营养细胞壁程序,从而使从营养细胞壁到合子细胞壁组装的迅速转变成为可能。对g - 溶素诱导基因和早期合子基因的注释揭示了不同的营养细胞壁程序和合子细胞壁程序,这得到了编码细胞壁修饰酶和参与核苷酸糖代谢的蛋白质的基因协同上调的支持。单细胞生物中从单倍体到二倍体的转变由GSM1/GSP1异源二聚体巧妙控制,将受精和配子融合转化为一个真正的分化程序。受精引发的、制造相关但结构和功能不同的细胞器(营养细胞壁与合子细胞壁)所需基因的整合,为复杂发育基因调控网络的进化提供了一种可能的情形。