Suppr超能文献

细胞周期的时间重塑伴随着果蝇生殖系中的分化过程。

Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline.

作者信息

Hinnant Taylor D, Alvarez Arturo A, Ables Elizabeth T

机构信息

Department of Biology, East Carolina University, Greenville, NC 27858, USA.

Department of Biology, East Carolina University, Greenville, NC 27858, USA.

出版信息

Dev Biol. 2017 Sep 1;429(1):118-131. doi: 10.1016/j.ydbio.2017.07.001. Epub 2017 Jul 12.

Abstract

Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues.

摘要

多细胞生物的发育依赖于细胞分化和增殖的协调调控。越来越多的证据表明,一些与细胞周期机制相关的分子调控途径也决定细胞命运;然而,细胞周期如何与细胞分化协同重塑在很大程度上仍不清楚。在果蝇卵子发生过程中,成熟卵母细胞通过一系列精确控制的分裂和分化步骤产生,起源于单个组织特异性干细胞。此外,随着卵子发生的进行,生殖系干细胞(GSCs)及其分化后代主要保持线性排列。能够在单个组织的背景下可视化分化的逐步事件,使得果蝇卵巢成为研究细胞周期重塑的绝佳模型。为了描述生殖细胞在原位分化时细胞周期是如何重塑的,我们使用了基于果蝇荧光泛素的细胞周期指示剂(Fly-FUCCI)系统,其中可降解版本的GFP::E2f1和RFP::CycB在细胞周期的每个阶段对细胞进行荧光标记。我们发现,细胞周期的G1、S和G2期长度在分化过程中发生了显著变化,并确定4/8细胞囊泡是一个关键的发育过渡状态,在此状态下细胞为特殊的细胞周期做准备。我们的数据表明,控制从G1期到S期过渡的转录激活因子E2f1是早期生殖系有丝分裂的关键调节因子。我们的数据支持这样一个模型,即E2f1对于GSC的正常增殖、自我更新和子细胞发育是必需的。相比之下,虽然含Cullin 4(Cul4)的泛素E3连接酶(CRL4)介导的E2f1降解对于早期生殖系的发育过渡至关重要,但我们的数据不支持E2f1降解作为限制GSC增殖或自我更新的机制发挥作用。综上所述,这些发现为细胞增殖调控和分化细胞命运的获得提供了进一步的见解,对整个发育组织具有广泛的意义。

相似文献

1
Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline.
Dev Biol. 2017 Sep 1;429(1):118-131. doi: 10.1016/j.ydbio.2017.07.001. Epub 2017 Jul 12.
2
Histone H3K9 trimethylase Eggless controls germline stem cell maintenance and differentiation.
PLoS Genet. 2011 Dec;7(12):e1002426. doi: 10.1371/journal.pgen.1002426. Epub 2011 Dec 22.
4
Protein synthesis and degradation are essential to regulate germline stem cell homeostasis in Drosophila testes.
Development. 2016 Aug 15;143(16):2930-45. doi: 10.1242/dev.134247. Epub 2016 Jul 28.
6
Gcn5 determines the fate of germline stem cells through degradation of Cyclin A.
FASEB J. 2017 May;31(5):2185-2194. doi: 10.1096/fj.201601217R. Epub 2017 Feb 10.
7
Aubergine Controls Germline Stem Cell Self-Renewal and Progeny Differentiation via Distinct Mechanisms.
Dev Cell. 2017 Apr 24;41(2):157-169.e5. doi: 10.1016/j.devcel.2017.03.023.
10
A regulatory network of Drosophila germline stem cell self-renewal.
Dev Cell. 2014 Feb 24;28(4):459-73. doi: 10.1016/j.devcel.2014.01.020.

引用本文的文献

1
Fusome morphogenesis is sufficient to promote female germline stem cell self-renewal in .
bioRxiv. 2025 Mar 13:2025.03.10.642432. doi: 10.1101/2025.03.10.642432.
2
Ras promotes germline stem cell division in Drosophila ovaries.
Stem Cell Reports. 2024 Aug 13;19(8):1205-1216. doi: 10.1016/j.stemcr.2024.06.005. Epub 2024 Jul 18.
3
A model of replicating coupled oscillators generates naturally occurring cell networks.
Development. 2023 Nov 15;150(22). doi: 10.1242/dev.202187. Epub 2023 Nov 13.
4
Single-cell RNA sequencing identifies eggplant as a regulator of germ cell development in Drosophila.
EMBO Rep. 2023 Oct 9;24(10):e56475. doi: 10.15252/embr.202256475. Epub 2023 Aug 21.
5
Simultaneous activation of Tor and suppression of ribosome biogenesis by TRIM-NHL proteins promotes terminal differentiation.
Cell Rep. 2023 Mar 28;42(3):112181. doi: 10.1016/j.celrep.2023.112181. Epub 2023 Mar 3.
6
Visualizing Fusome Morphology via Tubulin Immunofluorescence in Drosophila Ovarian Germ Cells.
Methods Mol Biol. 2023;2626:135-150. doi: 10.1007/978-1-0716-2970-3_7.
7
β-importin Tnpo-SR promotes germline stem cell maintenance and oocyte differentiation in female Drosophila.
Dev Biol. 2023 Feb;494:1-12. doi: 10.1016/j.ydbio.2022.11.006. Epub 2022 Nov 28.
8
Premeiotic pairing of homologous chromosomes during male meiosis.
Proc Natl Acad Sci U S A. 2022 Nov 22;119(47):e2207660119. doi: 10.1073/pnas.2207660119. Epub 2022 Nov 14.
9
Novel roles for RNA binding proteins squid, hephaesteus, and Hrb27C in Drosophila oogenesis.
Dev Dyn. 2023 Mar;252(3):415-428. doi: 10.1002/dvdy.550. Epub 2022 Nov 18.
10
Quantitative models for building and growing fated small cell networks.
Interface Focus. 2022 Jun 10;12(4):20210082. doi: 10.1098/rsfs.2021.0082. eCollection 2022 Aug 6.

本文引用的文献

1
Bam-dependent deubiquitinase complex can disrupt germ-line stem cell maintenance by targeting cyclin A.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6316-6321. doi: 10.1073/pnas.1619188114. Epub 2017 May 8.
2
Gcn5 determines the fate of germline stem cells through degradation of Cyclin A.
FASEB J. 2017 May;31(5):2185-2194. doi: 10.1096/fj.201601217R. Epub 2017 Feb 10.
4
Cycling in the Cell Fate Landscape.
Curr Top Dev Biol. 2016;116:153-65. doi: 10.1016/bs.ctdb.2015.10.001. Epub 2016 Jan 21.
5
Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks.
Stem Cells. 2016 Jun;34(6):1427-36. doi: 10.1002/stem.2345. Epub 2016 Mar 16.
6
Formula G1: Cell cycle in the driver's seat of stem cell fate determination.
Bioessays. 2016 Apr;38(4):325-32. doi: 10.1002/bies.201500187. Epub 2016 Feb 9.
8
Genetic Mosaic Analysis of Stem Cell Lineages in the Drosophila Ovary.
Methods Mol Biol. 2015;1328:57-72. doi: 10.1007/978-1-4939-2851-4_4.
9
E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.
Methods Mol Biol. 2016;1342:71-88. doi: 10.1007/978-1-4939-2957-3_4.
10
FUCCI sensors: powerful new tools for analysis of cell proliferation.
Wiley Interdiscip Rev Dev Biol. 2015 Sep-Oct;4(5):469-87. doi: 10.1002/wdev.189. Epub 2015 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验