Suppr超能文献

芽颈对酿酒酵母核膜裂变的影响。

Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.

作者信息

Melloy Patricia G, Rose Mark D

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Department of Biological and Allied Health Sciences, Fairleigh Dickinson University, Madison, NJ, United States.

Department of Molecular Biology, Princeton University, Princeton, NJ, United States.

出版信息

Exp Cell Res. 2017 Sep 15;358(2):390-396. doi: 10.1016/j.yexcr.2017.07.013. Epub 2017 Jul 13.

Abstract

Studies have shown that nuclear envelope fission (karyokinesis) in budding yeast depends on cytokinesis, but not distinguished whether this was a direct requirement, indirect, because of cell cycle arrest, or due to bud neck-localized proteins impacting both processes. To determine the requirements for karyokinesis, we examined mutants conditionally defective for bud emergence and/or nuclear migration. The common mutant phenotype was completion of the nuclear division cycle within the mother cell, but karyokinesis did not occur. In the cdc24 swe1 mutant, at the non-permissive temperature, multiple nuclei accumulated within the unbudded cell, with connected nuclear envelopes. Upon return to the permissive temperature, the cdc24 swe1 mutant initiated bud emergence, but only the nucleus spanning the neck underwent fission suggesting that the bud neck region is important for fission initiation. The neck may be critical for either mechanical reasons, as the contractile ring might facilitate fission, or for regulatory reasons, as the site of a protein network regulating nuclear envelope fission, mitotic exit, and cytokinesis. We also found that 77-85% of pairs of septin mutant nuclei completed nuclear envelope fission. In addition, 27% of myo1Δ mutant nuclei completed karyokinesis. These data suggested that fission is not dependent on mechanical contraction at the bud neck, but was instead controlled by regulatory proteins there.

摘要

研究表明,出芽酵母中的核膜分裂(核分裂)依赖于胞质分裂,但尚未明确这是直接需求、间接需求(由于细胞周期停滞),还是由于芽颈定位蛋白对这两个过程都有影响。为了确定核分裂的需求,我们研究了在芽出现和/或核迁移方面有条件缺陷的突变体。常见的突变体表型是母细胞内完成核分裂周期,但核分裂未发生。在cdc24 swe1突变体中,在非允许温度下,未出芽的细胞内积累了多个核,核膜相连。回到允许温度后,cdc24 swe1突变体开始出芽,但只有跨越芽颈的核进行了分裂,这表明芽颈区域对分裂起始很重要。芽颈可能因机械原因而至关重要,因为收缩环可能促进分裂,也可能因调节原因而至关重要,因为它是调节核膜分裂、有丝分裂退出和胞质分裂的蛋白质网络的位点。我们还发现,77 - 85%的septin突变体核对完成了核膜分裂。此外,27%的myo1Δ突变体核完成了核分裂。这些数据表明,分裂不依赖于芽颈处的机械收缩,而是由那里的调节蛋白控制。

相似文献

1
Influence of the bud neck on nuclear envelope fission in Saccharomyces cerevisiae.
Exp Cell Res. 2017 Sep 15;358(2):390-396. doi: 10.1016/j.yexcr.2017.07.013. Epub 2017 Jul 13.
2
Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1.
Mol Biol Cell. 2016 Jun 1;27(11):1764-75. doi: 10.1091/mbc.E16-01-0014. Epub 2016 Apr 6.
3
Role of the septin ring in the asymmetric localization of proteins at the mother-bud neck in Saccharomyces cerevisiae.
Mol Biol Cell. 2005 Aug;16(8):3455-66. doi: 10.1091/mbc.e04-09-0764. Epub 2005 May 18.
6
Novel functional dissection of the localization-specific roles of budding yeast polo kinase Cdc5p.
Mol Cell Biol. 2004 Nov;24(22):9873-86. doi: 10.1128/MCB.24.22.9873-9886.2004.
8
Saccharomyces cerevisiae Mob1p is required for cytokinesis and mitotic exit.
Mol Cell Biol. 2001 Oct;21(20):6972-83. doi: 10.1128/MCB.21.20.6972-6983.2001.

本文引用的文献

1
Sensing a bud in the yeast morphogenesis checkpoint: a role for Elm1.
Mol Biol Cell. 2016 Jun 1;27(11):1764-75. doi: 10.1091/mbc.E16-01-0014. Epub 2016 Apr 6.
2
Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling.
PLoS Genet. 2015 Dec 7;11(12):e1005684. doi: 10.1371/journal.pgen.1005684. eCollection 2015 Dec.
4
ER-associated retrograde SNAREs and the Dsl1 complex mediate an alternative, Sey1p-independent homotypic ER fusion pathway.
Mol Biol Cell. 2014 Nov 1;25(21):3401-12. doi: 10.1091/mbc.E14-07-1220. Epub 2014 Sep 3.
6
ER structure and function.
Curr Opin Cell Biol. 2013 Aug;25(4):428-33. doi: 10.1016/j.ceb.2013.02.006. Epub 2013 Mar 13.
7
Mechanisms of cytokinesis in budding yeast.
Cytoskeleton (Hoboken). 2012 Oct;69(10):710-26. doi: 10.1002/cm.21046. Epub 2012 Jul 31.
8
Morphogenesis and the cell cycle.
Genetics. 2012 Jan;190(1):51-77. doi: 10.1534/genetics.111.128314.
9
Septins: molecular partitioning and the generation of cellular asymmetry.
Cell Div. 2009 Aug 26;4:18. doi: 10.1186/1747-1028-4-18.
10
Mechanisms shaping the membranes of cellular organelles.
Annu Rev Cell Dev Biol. 2009;25:329-54. doi: 10.1146/annurev.cellbio.042308.113324.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验