Suppr超能文献

基于土壤参数的硬质小麦籽粒中镉含量的预测统计建模。

Predictive statistical modelling of cadmium content in durum wheat grain based on soil parameters.

机构信息

ISPA, INRA, Bordeaux Sciences Agro, 33140, Villenave d'Ornon, France.

ARVALIS-Institut du végétal, Station Expérimentale, 91720, Boigneville, France.

出版信息

Environ Sci Pollut Res Int. 2017 Sep;24(25):20641-20654. doi: 10.1007/s11356-017-9712-z. Epub 2017 Jul 15.

Abstract

Regulatory limits on cadmium (Cd) content in food products are tending to become stricter, especially in cereals, which are a major contributor to dietary intake of Cd by humans. This is of particular importance for durum wheat, which accumulates more Cd than bread wheat. The contamination of durum wheat grain by Cd depends not only on the genotype but also to a large extent on soil Cd availability. Assessing the phytoavailability of Cd for durum wheat is thus crucial, and appropriate methods are required. For this purpose, we propose a statistical model to predict Cd accumulation in durum wheat grain based on soil geochemical properties related to Cd availability in French agricultural soils with low Cd contents and neutral to alkaline pH (soils commonly used to grow durum wheat). The best model is based on the concentration of total Cd in the soil solution, the pH of a soil CaCl extract, the cation exchange capacity (CEC), and the content of manganese oxides (Tamm's extraction) in the soil. The model variables suggest a major influence of cadmium buffering power of the soil and of Cd speciation in solution. The model successfully explains 88% of Cd variability in grains with, generally, below 0.02 mg Cd kg prediction error in wheat grain. Monte Carlo cross-validation indicated that model accuracy will suffice for the European Community project to reduce the regulatory limit from 0.2 to 0.15 mg Cd kg grain, but not for the intermediate step at 0.175 mg Cd kg. The model will help farmers assess the risk that the Cd content of their durum wheat grain will exceed regulatory limits, and help food safety authorities test different regulatory thresholds to find a trade-off between food safety and the negative impact a too strict regulation could have on farmers.

摘要

食品中镉(Cd)含量的监管限制趋于更加严格,尤其是在谷物中,因为人类通过谷物摄入的 Cd 主要来自于这些食品。对于硬质小麦来说,这一点尤为重要,因为它比面包小麦积累更多的 Cd。Cd 对硬质小麦谷物的污染不仅取决于基因型,而且在很大程度上还取决于土壤中 Cd 的可用性。因此,评估 Cd 对硬质小麦的植物可利用性至关重要,需要采用适当的方法。为此,我们提出了一种统计模型,该模型基于与法国低 Cd 含量和中性至碱性 pH 值土壤中 Cd 有效性相关的土壤地球化学特性,来预测硬质小麦籽粒中的 Cd 积累。在通常用于种植硬质小麦的土壤中,该模型基于土壤溶液中总 Cd 浓度、土壤 CaCl2提取物的 pH 值、阳离子交换量(CEC)和土壤中锰氧化物(Tamm 提取)的含量。模型变量表明,土壤对 Cd 的缓冲能力和溶液中 Cd 的形态对 Cd 积累具有重要影响。该模型成功地解释了 88%的籽粒 Cd 变异,其对小麦籽粒中 Cd 的预测误差一般低于 0.02mg Cd kg-1。蒙特卡罗交叉验证表明,该模型的准确性足以满足欧洲共同体项目将监管限值从 0.2 降低到 0.15mg Cd kg-1的要求,但不能满足中间限值 0.175mg Cd kg-1的要求。该模型将有助于农民评估其硬质小麦籽粒 Cd 含量超过监管限值的风险,并有助于食品安全当局测试不同的监管阈值,以在食品安全和过于严格的监管可能对农民造成的负面影响之间找到一个平衡点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验