Suppr超能文献

通过数千个大型程序化基因组缺失进行CRISPR/Cas9介导的扫描以寻找HPRT1表达所需的调控元件

CRISPR/Cas9-Mediated Scanning for Regulatory Elements Required for HPRT1 Expression via Thousands of Large, Programmed Genomic Deletions.

作者信息

Gasperini Molly, Findlay Gregory M, McKenna Aaron, Milbank Jennifer H, Lee Choli, Zhang Melissa D, Cusanovich Darren A, Shendure Jay

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.

出版信息

Am J Hum Genet. 2017 Aug 3;101(2):192-205. doi: 10.1016/j.ajhg.2017.06.010. Epub 2017 Jul 14.

Abstract

The extent to which non-coding mutations contribute to Mendelian disease is a major unknown in human genetics. Relatedly, the vast majority of candidate regulatory elements have yet to be functionally validated. Here, we describe a CRISPR-based system that uses pairs of guide RNAs (gRNAs) to program thousands of kilobase-scale deletions that deeply scan across a targeted region in a tiling fashion ("ScanDel"). We applied ScanDel to HPRT1, the housekeeping gene underlying Lesch-Nyhan syndrome, an X-linked recessive disorder. Altogether, we programmed 4,342 overlapping 1 and 2 kb deletions that tiled 206 kb centered on HPRT1 (including 87 kb upstream and 79 kb downstream) with median 27-fold redundancy per base. We functionally assayed programmed deletions in parallel by selecting for loss of HPRT function with 6-thioguanine. As expected, sequencing gRNA pairs before and after selection confirmed that all HPRT1 exons are needed. However, HPRT1 function was robust to deletion of any intergenic or deeply intronic non-coding region, indicating that proximal regulatory sequences are sufficient for HPRT1 expression. Although our screen did identify the disruption of exon-proximal non-coding sequences (e.g., the promoter) as functionally consequential, long-read sequencing revealed that this signal was driven by rare, imprecise deletions that extended into exons. Our results suggest that no singular distal regulatory element is required for HPRT1 expression and that distal mutations are unlikely to contribute substantially to Lesch-Nyhan syndrome burden. Further application of ScanDel could shed light on the role of regulatory mutations in disease at other loci while also facilitating a deeper understanding of endogenous gene regulation.

摘要

非编码突变对孟德尔疾病的影响程度是人类遗传学中一个主要的未知领域。与此相关的是,绝大多数候选调控元件尚未得到功能验证。在此,我们描述了一种基于CRISPR的系统,该系统使用成对的引导RNA(gRNA)来编程数千个千碱基规模的缺失,以平铺的方式深度扫描目标区域(“扫描缺失”)。我们将扫描缺失应用于HPRT1,这是莱施-尼汉综合征(一种X连锁隐性疾病)所涉及的管家基因。我们总共编程了4342个重叠的1 kb和2 kb缺失,这些缺失覆盖了以HPRT1为中心的206 kb区域(包括上游87 kb和下游79 kb),每个碱基的中位数冗余度为27倍。我们通过用6-硫鸟嘌呤选择HPRT功能丧失来并行功能测定编程的缺失。正如预期的那样,选择前后对gRNA对进行测序证实所有HPRT1外显子都是必需的。然而,HPRT1功能对任何基因间或内含子深处的非编码区域的缺失具有抗性,这表明近端调控序列足以实现HPRT1的表达。虽然我们的筛选确实确定外显子近端非编码序列(如启动子)的破坏具有功能后果,但长读测序显示该信号是由延伸到外显子的罕见、不精确缺失驱动的。我们的结果表明,HPRT1表达不需要单一的远端调控元件,并且远端突变不太可能对莱施-尼汉综合征负担有实质性贡献。扫描缺失的进一步应用可能会揭示其他位点调控突变在疾病中的作用,同时也有助于更深入地理解内源性基因调控。

相似文献

1
CRISPR/Cas9-Mediated Scanning for Regulatory Elements Required for HPRT1 Expression via Thousands of Large, Programmed Genomic Deletions.
Am J Hum Genet. 2017 Aug 3;101(2):192-205. doi: 10.1016/j.ajhg.2017.06.010. Epub 2017 Jul 14.
3
Molecular characterization of a deletion in the HPRT1 gene in a patient with Lesch-Nyhan syndrome.
Nucleosides Nucleotides Nucleic Acids. 2011 Dec;30(12):1266-71. doi: 10.1080/15257770.2011.608396.
4
CRISPR/Cas9-mediated generation of human embryonic stem cell sub-lines with HPRT1 gene knockout to model Lesch Nyhan disease.
Stem Cell Res. 2023 Sep;71:103144. doi: 10.1016/j.scr.2023.103144. Epub 2023 Jun 15.
5
Methylation status of HPRT1 promoter in HPRT deficiency with normal coding region.
Nucleosides Nucleotides Nucleic Acids. 2010 Jun;29(4-6):301-5. doi: 10.1080/15257771003738675.
6
[Generation of cell strains containing point mutations in HPRT1 by CRISPR/Cas9].
Yi Chuan. 2019 Oct 20;41(10):939-949. doi: 10.16288/j.yczz.19-108.
8
Novel mutation in the human HPRT1 gene and the Lesch-Nyhan disease.
Nucleosides Nucleotides Nucleic Acids. 2017 Nov 2;36(11):704-711. doi: 10.1080/15257770.2017.1395037. Epub 2017 Nov 29.
9
Genetic analysis of the HPRT mutation of Lesch-Nyhan syndrome in a Chinese family.
Zhonghua Yi Xue Za Zhi (Taipei). 1995 Dec;56(6):359-66.
10
Establishment and characterization of Lesch-Nyhan syndrome rabbit model.
Yi Chuan. 2024 May 20;46(5):408-420. doi: 10.16288/j.yczz.24-012.

引用本文的文献

1
Uncovering hidden enhancers through unbiased in vivo testing.
Nat Commun. 2025 Aug 8;16(1):7313. doi: 10.1038/s41467-025-62497-0.
2
Engineering structural variants to interrogate genome function.
Nat Genet. 2024 Dec;56(12):2623-2635. doi: 10.1038/s41588-024-01981-7. Epub 2024 Nov 12.
3
DNA-binding factor footprints and enhancer RNAs identify functional non-coding genetic variants.
Genome Biol. 2024 Aug 6;25(1):208. doi: 10.1186/s13059-024-03352-1.
4
Epigenome editing technologies for discovery and medicine.
Nat Biotechnol. 2024 Aug;42(8):1199-1217. doi: 10.1038/s41587-024-02320-1. Epub 2024 Jul 29.
5
Multicenter integrated analysis of noncoding CRISPRi screens.
Nat Methods. 2024 Apr;21(4):723-734. doi: 10.1038/s41592-024-02216-7. Epub 2024 Mar 19.
8
Mapping - and -regulatory target genes of human-specific deletions.
bioRxiv. 2024 Dec 1:2023.12.27.573461. doi: 10.1101/2023.12.27.573461.
9
Parallelized engineering of mutational models using piggyBac transposon delivery of CRISPR libraries.
Cell Rep Methods. 2024 Jan 22;4(1):100672. doi: 10.1016/j.crmeth.2023.100672. Epub 2023 Dec 12.

本文引用的文献

1
A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells.
Nat Methods. 2017 Jun;14(6):629-635. doi: 10.1038/nmeth.4264. Epub 2017 Apr 17.
2
3
Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library.
Nat Biotechnol. 2016 Dec;34(12):1279-1286. doi: 10.1038/nbt.3715. Epub 2016 Oct 31.
4
Chromosome conformation elucidates regulatory relationships in developing human brain.
Nature. 2016 Oct 27;538(7626):523-527. doi: 10.1038/nature19847. Epub 2016 Oct 19.
5
High-resolution interrogation of functional elements in the noncoding genome.
Science. 2016 Sep 30;353(6307):1545-1549. doi: 10.1126/science.aaf7613.
6
Systematic mapping of functional enhancer-promoter connections with CRISPR interference.
Science. 2016 Nov 11;354(6313):769-773. doi: 10.1126/science.aag2445. Epub 2016 Sep 29.
8
Whole-organism lineage tracing by combinatorial and cumulative genome editing.
Science. 2016 Jul 29;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub 2016 May 26.
9
Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders.
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4434-9. doi: 10.1073/pnas.1521754113. Epub 2016 Apr 4.
10
A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening.
Genome Res. 2016 Mar;26(3):397-405. doi: 10.1101/gr.197152.115. Epub 2016 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验