Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
Dalton Trans. 2017 Aug 22;46(33):10814-10829. doi: 10.1039/c7dt01696d.
A C,N,S pincer complex has been synthesized for structural modeling of the organometallic active site of mono-[Fe] hydrogenase (HMD). The C,N,S chelate allows for systematic investigation of the substitution reactions of CO and other exogenous X/L-type ligands, as well as examination of the exact roles of the Fe-carbamoyl and {Fe(CO)} units in stabilizing the low-spin Fe(ii) center. Reaction of the 'apo-ligand' 6-(2-(methylthio)phenyl)pyridin-2-amine (NS) with [Fe(CO)(Br)] affords the organometallic complex [(CNS)Fe(CO)(Br)] (1). Facile substitutions of the halide with L-type ligands such as MeCN, PR (R = CH, OEt, Me), pyridine and BuNC afford diamagnetic cations of the type [(CNS)Fe(CO)(L)] (2a-f). Treatment of 1 with Na[S(2,6-MeCH)] affords the neutral complex [(CNS)Fe(CO)(S(2,6-MeCH))] (2g). Substitution for CO ligand(s) was achieved with trimethylamine-N-oxide (TMAO), and in the presence of PPh or pyridine it afforded the six-coordinate monocarbonyl complexes [(CNS)Fe(CO)(Br)(PPh)] (3a), (CNS)Fe(CO)(PPh) (3b), and (CNS)Fe(CO)(py) (3c). Interestingly the stable low-spin Fe(ii), 5-coordinate complex of the formula (CNS)Fe(CO) (4) was accessed by treating 1 with TlBAr in non-coordinating solvents (DCE, FPh); notably, 4 does not react with H in the presence (or absence) of a base. To elucidate the electronic structure differences between the five-coordinate versus six-coordinate complexes, DFT calculations for 4 and 1 were performed. Geometry optimization indicates that 4+ maintains a square-pyramidal geometry, and the Hessian calculation accurately simulates the ν(C[triple bond, length as m-dash]O) in 4+. The electronic structure of 4+ predicts that the HOMO (comprised of Fe|N) and LUMO (Fe only) orbitals in 4+ are properly oriented to interact with an incoming ligand. However, we postulate that codirectional orientation of the HOMO and LUMO orbitals explains the lack of H reactivity with this equatorial CNS donor set, despite many other structural similarities to the endogenous active site. Based on a related work from our lab, we conclude that a facial C,N,S coordination mode is necessary to promote H activation and cleavage.
已合成了一个 C、N、S 三齿配合物,用于单[Fe]氢化酶(HMD)的有机金属活性位点的结构建模。C、N、S 螯合物允许对 CO 和其他外源性 X/L 型配体的取代反应进行系统研究,并检验 Fe-氨甲酰基和{Fe(CO)}单元在稳定低自旋 Fe(ii)中心方面的确切作用。用 [Fe(CO)(Br)]与“apo-配体”6-(2-(甲基硫代)苯基)吡啶-2-胺(NS)反应,得到有机金属配合物[(CNS)Fe(CO)(Br)](1)。卤化物与 MeCN、PR(R=CH、OEt、Me)、吡啶和 BuNC 等 L 型配体的易取代,得到了[(CNS)Fe(CO)(L)](2a-f)类型的顺磁性阳离子。用 Na[S(2,6-MeCH)]处理 1 可得到中性配合物[(CNS)Fe(CO)(S(2,6-MeCH))](2g)。用三甲胺 N-氧化物(TMAO)取代 CO 配体,并在 PPh 或吡啶存在下,得到六配位单羰基配合物[(CNS)Fe(CO)(Br)(PPh)](3a)、(CNS)Fe(CO)(PPh)(3b)和(CNS)Fe(CO)(py)(3c)。有趣的是,用 TlBAr 在非配位溶剂(DCE、FPh)中处理 1 可得到稳定的低自旋 Fe(ii)、5 配位配合物(CNS)Fe(CO)(4);值得注意的是,4 不会在有(或没有)碱的情况下与 H 反应。为了阐明五配位与六配位配合物之间的电子结构差异,对 4 和 1 进行了 DFT 计算。几何优化表明,4+保持四方锥几何形状,Hessian 计算准确模拟了 4+中 ν(C[三键,长度为 m-dash]O)。4+的电子结构预测,HOMO(由 Fe|N 组成)和 LUMO(仅 Fe)轨道在 4+中正确取向以与进入的配体相互作用。然而,我们假设 HOMO 和 LUMO 轨道的同向取向解释了尽管与内源性活性位点有许多其他结构相似之处,但该赤道 CNS 供体基团与 H 没有反应性。基于我们实验室的一项相关工作,我们得出结论,面式 C、N、S 配位模式对于促进 H 的活化和断裂是必要的。