Subbarao G V, Arango J, Masahiro K, Hooper A M, Yoshihashi T, Ando Y, Nakahara K, Deshpande S, Ortiz-Monasterio I, Ishitani M, Peters M, Chirinda N, Wollenberg L, Lata J C, Gerard B, Tobita S, Rao I M, Braun H J, Kommerell V, Tohme J, Iwanaga M
Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan.
International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia.
Plant Sci. 2017 Sep;262:165-168. doi: 10.1016/j.plantsci.2017.05.004. Epub 2017 May 19.
Accelerated soil-nitrifier activity and rapid nitrification are the cause of declining nitrogen-use efficiency (NUE) and enhanced nitrous oxide (NO) emissions from farming. Biological nitrification inhibition (BNI) is the ability of certain plant roots to suppress soil-nitrifier activity, through production and release of nitrification inhibitors. The power of phytochemicals with BNI-function needs to be harnessed to control soil-nitrifier activity and improve nitrogen-cycling in agricultural systems. Transformative biological technologies designed for genetic mitigation are needed, so that BNI-enabled crop-livestock and cropping systems can rein in soil-nitrifier activity, to help reduce greenhouse gas (GHG) emissions and globally make farming nitrogen efficient and less harmful to environment. This will reinforce the adaptation or mitigation impact of other climate-smart agriculture technologies.
土壤硝化作用加速以及快速硝化是导致农业氮素利用效率(NUE)下降和氧化亚氮(N₂O)排放增加的原因。生物硝化抑制(BNI)是某些植物根系通过产生和释放硝化抑制剂来抑制土壤硝化作用的能力。需要利用具有BNI功能的植物化学物质的力量来控制土壤硝化作用,并改善农业系统中的氮循环。需要设计用于基因缓解的变革性生物技术,以便具备BNI功能的作物-畜牧和种植系统能够控制土壤硝化作用,从而帮助减少温室气体(GHG)排放,并在全球范围内提高农业氮素利用效率,降低对环境的危害。这将加强其他气候智能型农业技术的适应或缓解影响。